
Pragmatic systemd
by David Both

We are Opensource.com

Opensource.com is a community website publishing stories about creating, adopting, and
sharing open source solutions. Visit Opensource.com to learn more about how the open
source way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Do you have an open source story to tell? Submit a story idea at opensource.com/story

Email us at open@opensource.com

http://opensource.com/story
mailto://open@opensource.com
https://www.redhat.com?sc_cid=7013a000003BkHQAA0

Table of Contents
Learning to love systemd...4
Understanding systemd at startup..16
Start using systemd as a troubleshooting tool..41
Manage startup using systemd...47
Control your computer time and date with systemd..61
Use systemd timers instead of cronjobs...70
systemd calendar and timespans...82
Using systemd journals to troubleshoot transient problems...91
Resolve systemd-resolved name-service failures with Ansible...110
Analyze Linux startup performance...114
Managing resources with cgroups in systemd...124

David Both

David Both is an Open Source Software and GNU/Linux advocate,
trainer, writer, and speaker who lives in Raleigh North Carolina. He
is a strong proponent of and evangelist for the "Linux Philosophy."

David has been in the IT industry for nearly 50 years. He has taught
RHCE classes for Red Hat and has worked at MCI Worldcom, Cisco,
and the State of North Carolina. He has been working with Linux
and Open Source Software for over 20 years.

David prefers to purchase the components and build his own computers from scratch to
ensure that each new computer meets his exacting specifications. His primary workstation is
an ASUS TUF X299 motherboard and an Intel i9 CPU with 16 cores (32 CPUs) and 64GB of
RAM in a ThermalTake Core X9 case.

David has written articles for magazines including, Linux Magazine, Linux Journal. His article
"Complete Kickstart," co-authored with a colleague at Cisco, was ranked 9th in the Linux
Magazine Top Ten Best System Administration Articles list for 2008. David currently writes
prolifically for OpenSource.com and Enable SysAdmin.

David currently has one book published, "The Linux Philosophy for SysAdmins." and is now is
working on his next project, “Using and Administering Linux: Zero to SysAdmin,” a self-study
training course in three volumes that is scheduled for release in late 2019."

David can be reached at LinuxGeek46@both.org or on Mastodon at
@LinuxGeek46@linuxrocks.online

Creative Commons Attribution Share-alike 4.0 3

Learning to love systemd

For the record, systemd is spelled in all lower-case, even at the beginning of a sentence.
systemd (see?) is a replacement for init and SystemV init scripts. It's also much more.

Like most sysadmins, when I think of the init program and SystemV, I think of Linux startup
and shutdown and not really much else, like managing services once they are up and running.
Like init, systemd is the mother of all processes, and it is responsible for bringing the Linux
host up to a state in which productive work can be done. Some of the functions assumed by
systemd, which is far more extensive than the old init program, are to manage many aspects
of a running Linux host, including mounting filesystems, managing hardware, handling timers,
and starting and managing the system services that are required to have a productive Linux
host.

This ebook explores systemd's functions both at startup and beginning after startup finishes.
It's an unofficial companion to my three-volume Linux training course, Using and
administering Linux: zero to sysadmin, and contains great information for advanced users and
beginning sysadmins alike.

Linux boot
The complete process that takes a Linux host from an off state to a running state is complex,
but it is open and knowable. Before getting into the details, I'll give a quick overview
from when the host hardware is turned on until the system is ready for a user to log in. Most of
the time, "the boot process" is discussed as a single entity, but that is not accurate. There are,
in fact, three major parts to the full boot and startup process:

• Hardware boot: Initializes the system hardware
• Linux boot: Loads the Linux kernel and then systemd
• Linux startup: Where systemd prepares the host for productive work

Creative Commons Attribution Share-alike 4.0 4

http://www.both.org/?page_id=1183
http://www.both.org/?page_id=1183

The Linux startup sequence begins after the kernel has loaded either init or systemd,
depending upon whether the distribution uses the old or new startup, respectively. The init
and systemd programs start and manage all the other processes and are both known as the
"mother of all processes" on their respective systems.

It is important to separate the hardware boot from the Linux boot from the Linux startup and
to explicitly define the demarcation points between them. Understanding these differences
and what part each plays in getting a Linux system to a state where it can be productive
makes it possible to manage these processes and better determine where a problem is
occurring during what most people refer to as "boot."

The startup process follows the three-step boot process and brings the Linux computer up to
an operational state in which it is usable for productive work. The startup process begins when
the kernel transfers control of the host to systemd.

systemd controversy
systemd can evoke a wide range of reactions from sysadmins and others responsible for
keeping Linux systems up and running. The fact that systemd is taking over so many tasks in
many Linux systems has engendered pushback and discord among certain groups of
developers and sysadmins.

SystemV and systemd are two different methods of performing the Linux startup sequence.
SystemV start scripts and the init program are the old methods, and systemd using targets is
the new method. Although most modern Linux distributions use the newer systemd for
startup, shutdown, and process management, there are still some that do not. One reason is
that some distribution maintainers and some sysadmins prefer the older SystemV method
over the newer systemd.

I think both have advantages.

Why I prefer SystemV
I prefer SystemV because it is more open. Startup is accomplished using Bash scripts. After
the kernel starts the init program, which is a compiled binary, init launches the rc.sysinit
script, which performs many system initialization tasks. After rc.sysinit completes, init
launches the /etc/rc.d/rc script, which in turn starts the various services defined by the
SystemV start scripts in the /etc/rc.d/rcX.d, where "X" is the number of the runlevel being
started.

Creative Commons Attribution Share-alike 4.0 5

Except for the init program itself, all these programs are open and easily knowable scripts. It is
possible to read through these scripts and learn exactly what is taking place during the entire
startup process, but I don't think many sysadmins actually do that. Each start script is
numbered so that it starts its intended service in a specific sequence. Services are started
serially, and only one service starts at a time.

systemd, developed by Red Hat's Lennart Poettering and Kay Sievers, is a complex system of
large, compiled binary executables that are not understandable without access to the source
code. It is open source, so "access to the source code" isn't hard, just less convenient. systemd
appears to represent a significant refutation of multiple tenets of the Linux philosophy. As a
binary, systemd is not directly open for the sysadmin to view or make easy changes. systemd
tries to do everything, such as managing running services, while providing significantly more
status information than SystemV. It also manages hardware, processes, and groups of
processes, filesystem mounts, and much more. systemd is present in almost every aspect of
the modern Linux host, making it the one-stop tool for system management. All of this is a
clear violation of the tenets that programs should be small and that each program should do
one thing and do it well.

Why I prefer systemd
I prefer systemd as my startup mechanism because it starts as many services as possible in
parallel, depending upon the current stage in the startup process. This speeds the overall
startup and gets the host system to a login screen faster than SystemV.

systemd manages almost every aspect of a running Linux system. It can manage running
services while providing significantly more status information than SystemV. It also manages
hardware, processes and groups of processes, filesystem mounts, and much more. systemd is
present in almost every aspect of the modern Linux operating system, making it the one-stop
tool for system management. (Does this sound familiar?)

The systemd tools are compiled binaries, but the tool suite is open because all the
configuration files are ASCII text files. Startup configuration can be modified through various
GUI and command-line tools, as well as adding or modifying various configuration files to suit
the needs of the specific local computing environment.

The real issue
Did you think I could not like both startup systems? I do, and I can work with either one.

Creative Commons Attribution Share-alike 4.0 6

In my opinion, the real issue and the root cause of most of the controversy between SystemV
and systemd is that there is no choice on the sysadmin level. The choice of whether to use
SystemV or systemd has already been made by the developers, maintainers, and packagers of
the various distributions—but with good reason. Scooping out and replacing an init system, by
its extreme, invasive nature, has a lot of consequences that would be hard to tackle outside
the distribution design process.

Despite the fact that this choice is made for me, my Linux hosts boot up and work, which is
what I usually care the most about. As an end user and even as a sysadmin, my primary
concern is whether I can get my work done, work such as writing my books and this article,
installing updates, and writing scripts to automate everything. So long as I can do my work, I
don't really care about the start sequence used on my distro.

I do care when there is a problem during startup or service management. Regardless of which
startup system is used on a host, I know enough to follow the sequence of events to find the
failure and fix it.

Replacing SystemV
There have been previous attempts at replacing SystemV with something a bit more modern.
For about two releases, Fedora used a thing called Upstart to replace the aging SystemV, but
it did not replace init and provided no changes that I noticed. Because Upstart provided no
significant changes to the issues surrounding SystemV, efforts in this direction were quickly
dropped in favor of systemd.

Despite the fact that most Linux developers agree that replacing the old SystemV startup is a
good idea, many developers and sysadmins dislike systemd for that. Rather than rehash all the
so-called issues that people have—or had—with systemd, I will refer you to two good, if
somewhat old, articles that should cover most everything. Linus Torvalds, the creator of the
Linux kernel, seems disinterested. In a 2014 ZDNet article, Linus Torvalds and others on
Linux's systemd, Linus is clear about his feelings.

"I don't actually have any particularly strong opinions on systemd itself. I've had
issues with some of the core developers that I think are much too cavalier about
bugs and compatibility, and I think some of the design details are insane (I dislike
the binary logs, for example), but those are details, not big issues."

In case you don't know much about Linus, I can tell you that if he does not like something, he
is very outspoken, explicit, and quite clear about that dislike.

Creative Commons Attribution Share-alike 4.0 7

https://www.zdnet.com/article/linus-torvalds-and-others-on-linuxs-systemd/
https://www.zdnet.com/article/linus-torvalds-and-others-on-linuxs-systemd/
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose

In 2013, Poettering wrote a long blog post in which he debunks the myths about systemd while
providing insight into some of the reasons for creating it. I highly recommend reading it.

systemd tasks
Depending upon the options used during the compile process (which are not considered in
this series), systemd can have as many as 69 binary executables that perform the following
tasks, among others:

• The systemd program runs as PID 1 and provides system startup of as many services in
parallel as possible, which, as a side effect, speeds overall startup times. It also
manages the shutdown sequence.

• The systemctl program provides a user interface for service management.
• Support for SystemV and LSB start scripts is offered for backward compatibility.
• Service management and reporting provide more service status data than SystemV.
• It includes tools for basic system configuration, such as hostname, date, locale, lists of

logged-in users, running containers and virtual machines, system accounts, runtime
directories and settings, daemons to manage simple network configuration, network
time synchronization, log forwarding, and name resolution.

• It offers socket management.
• systemd timers provide advanced cron-like capabilities to include running a script at

times relative to system boot, systemd startup, the last time the timer was started, and
more.

• It provides a tool to analyze dates and times used in timer specifications.
• Mounting and unmounting of filesystems with hierarchical awareness allows safer

cascading of mounted filesystems.
• It enables the positive creation and management of temporary files, including deletion.
• An interface to D-Bus provides the ability to run scripts when devices are plugged in or

removed. This allows all devices, whether pluggable or not, to be treated as plug-and-
play, which considerably simplifies device handling.

• Its tool to analyze the startup sequence can be used to locate the services that take
the most time.

• It includes journals for storing system log messages and tools for managing the
journals.

Creative Commons Attribution Share-alike 4.0 8

http://0pointer.de/blog/projects/the-biggest-myths.html

Architecture
Those tasks and more are supported by a number of daemons, control programs, and
configuration files. Figure 1 shows many of the components that belong to systemd. This is a
simplified diagram designed to provide a high-level overview, so it does not include all of the
individual programs or files. Nor does it provide any insight into data flow, which is so complex
that it would be a useless exercise in the context of this series of articles.

Fig 1: Architecture of systemd, by Shmuel Csaba Otto Traian (CC BY-SA 3.0)

A full exposition of systemd would take a book on its own. You do not need to understand the
details of how the systemd components in Figure 1 fit together; it's enough to know about the
programs and components that enable managing various Linux services and deal with log files
and journals. But it's clear that systemd is not the monolithic monstrosity it is purported to be
by some of its critics.

systemd as PID 1
systemd is PID 1. Some of its functions, which are far more extensive than the old SystemV3
init program, are to manage many aspects of a running Linux host, including mounting
filesystems and starting and managing system services required to have a productive Linux

Creative Commons Attribution Share-alike 4.0 9

host. Any of systemd's tasks that are not related to the startup sequence are outside the
scope of this article (but some will be explored later in this series).

First, systemd mounts the filesystems defined by /etc/fstab, including any swap files or
partitions. At this point, it can access the configuration files located in /etc, including its own.
It uses its configuration link, /etc/systemd/system/default.target, to determine which
state or target it should boot the host into. The default.target file is a symbolic link to the
true target file. For a desktop workstation, this is typically going to be the graphical.target,
which is equivalent to runlevel 5 in SystemV. For a server, the default is more likely to be the
multi-user.target, which is like runlevel 3 in SystemV. The emergency.target is similar to
single-user mode. Targets and services are systemd units.

The table below (Figure 2) compares the systemd targets with the old SystemV startup
runlevels. systemd provides the systemd target aliases for backward compatibility. The target
aliases allow scripts—and many sysadmins—to use SystemV commands like init 3 to change
runlevels. Of course, the SystemV commands are forwarded to systemd for interpretation and
execution.

systemd
targets

SystemV
runlevel

target aliases Description

default.target This target is always aliased with a symbolic link to
either multi-user.target or graphical.target.
systemd always uses the default.target to start the
system. The default.target should never be aliased
to halt.target, poweroff.target, or reboot.target.

graphical.target 5 runlevel5.target Multi-user.target with a GUI
 4 runlevel4.target Unused. Runlevel 4 was identical to runlevel 3 in the

SystemV world. This target could be created and
customized to start local services without changing
the default multi-user.target.

multi-user.target 3 runlevel3.target All services running, but command-line interface
(CLI) only

 2 runlevel2.target Multi-user, without NFS, but all other non-GUI
services running

rescue.target 1 runlevel1.target A basic system, including mounting the filesystems
with only the most basic services running and a rescue
shell on the main console

emergency.targe
t

S Single-user mode—no services are running;
filesystems are not mounted. This is the most basic
level of operation with only an emergency shell

Creative Commons Attribution Share-alike 4.0 10

systemd
targets

SystemV
runlevel

target aliases Description

running on the main console for the user to interact
with the system.

halt.target Halts the system without powering it down
reboot.target 6 runlevel6.target Reboot
poweroff.target 0 runlevel0.target Halts the system and turns the power off
Fig. 2: Comparison of SystemV runlevels with systemd targets and some target aliases

Each target has a set of dependencies described in its configuration file. systemd starts the
required dependencies, which are the services required to run the Linux host at a specific
level of functionality. When all the dependencies listed in the target configuration files are
loaded and running, the system is running at that target level. In Figure 2, the targets with the
most functionality are at the top of the table, with functionality declining towards the bottom
of the table.

systemd also looks at the legacy SystemV init directories to see if any startup files exist there.
If so, systemd uses them as configuration files to start the services described by the files. The
deprecated network service is a good example of one that still uses SystemV startup files in
Fedora.

Figure 3 is copied directly from the bootup man page. It shows a map of the general sequence
of events during systemd startup and the basic ordering requirements to ensure a successful
startup.

Creative Commons Attribution Share-alike 4.0 11

 cryptsetup-pre.target
 |
 (various low-level v
 API VFS mounts: (various cryptsetup devices...)
 mqueue, configfs, | |
 debugfs, ...) v |
 | cryptsetup.target |
 | (various swap | | remote-fs-pre.target
 | devices...) | | | |
 | | | | | v
 | v local-fs-pre.target | | | (network file systems)
swap.target		v v	
	v	remote-cryptsetup.target	
	(various low-level (various mounts and		
	services: udevd, fsck services...)		remote-fs.target
	tmpfiles, random		
	seed, sysctl, ...) v		/
		local-fs.target	
 ____|______|_______________ ______|___________/ | /
 \ / | /
 v | /
 sysinit.target | /
 | | /
 ______________________/|_____________________ | /
 / | | | \ | /
 | | | | | | /
 v v | v | | /
 (various (various | (various | |/
 timers...) paths...) | sockets...) | |
 | | | | | |
 v v | v | |
 timers.target paths.target | sockets.target | |
 | | | | v |
 v _______ | _____/ rescue.service |
 \|/ | |
 v v |
 basic.target rescue.target |
 | |
 ________v____________________ |
 / | \ |
 | | | |
 v v v |
 display- (various system (various system |
 manager.service services services) |
 | required for | |
 | graphical UIs) v v
 | | multi-user.target
 emergency.service | | |
 | _____________ | _____________/
 v \|/
 emergency.target v
 graphical.target

Fig 3: The systemd startup map

Creative Commons Attribution Share-alike 4.0 12

The sysinit.target and basic.target targets can be considered checkpoints in the startup
process. Although one of systemd's design goals is to start system services in parallel, certain
services and functional targets must be started before other services and targets can start.
These checkpoints cannot be passed until all of the services and targets required by that
checkpoint are fulfilled.

The sysinit.target is reached when all of the units it depends on are completed. All of those
units, mounting filesystems, setting up swap files, starting udev, setting the random generator
seed, initiating low-level services, and setting up cryptographic services (if one or more
filesystems are encrypted), must be completed but, within the sysinit.target, those tasks
can be performed in parallel.

The sysinit.target starts up all of the low-level services and units required for the system to
be marginally functional and that are required to enable moving onto the basic.target.

After the sysinit.target is fulfilled, systemd then starts all the units required to fulfill the next
target. The basic target provides some additional functionality by starting units that are
required for all of the next targets. These include setting up things like paths to various
executable directories, communication sockets, and timers.

Finally, the user-level targets, multi-user.target or graphical.target, can be initialized. The
multi-user.target must be reached before the graphical target dependencies can be met.
The underlined targets in Figure 3 are the usual startup targets. When one of these targets is
reached, startup has completed. If the multi-user.target is the default, then you should see
a text-mode login on the console. If graphical.target is the default, then you should see a
graphical login; the specific GUI login screen you see depends on your default display
manager.

The bootup man page also describes and provides maps of the boot into the initial RAM disk
and the systemd shutdown process.

systemd also provides a tool that lists dependencies of a complete startup or for a specified
unit. A unit is a controllable systemd resource entity that can range from a specific service,
such as httpd or sshd, to timers, mounts, sockets, and more. Try the following command and
scroll through the results.

systemctl list-dependencies graphical.target

Notice that this fully expands the top-level target units list required to bring the system up to
the graphical target run mode. Use the --all option to expand all of the other units as well.

Creative Commons Attribution Share-alike 4.0 13

systemctl list-dependencies --all graphical.target

You can search for strings such as "target," "slice," and "socket" using the search tools of the
less command.

Try these commands:

systemctl list-dependencies multi-user.target

systemctl list-dependencies rescue.target

systemctl list-dependencies local-fs.target

systemctl list-dependencies dbus.service

This tool helps me visualize the specifics of the startup dependencies for the host I am
working on. Go ahead and spend some time exploring the startup tree for one or more of your
Linux hosts. But be careful because the systemctl man page contains this note:

"Note that this command only lists units currently loaded into memory by the
service manager. In particular, this command is not suitable to get a comprehensive
list at all reverse dependencies on a specific unit, as it won't list the dependencies
declared by units currently not loaded."

Final thoughts
Even before getting very deep into systemd, it's obvious that it is both powerful and complex.
It is also apparent that systemd is not a single, huge, monolithic, and unknowable binary file.
Rather, it is composed of a number of smaller components and subcommands that are
designed to perform specific tasks.

Resources
There's a series of deeply technical articles for Linux sysadmins by Lennart Poettering, the
designer and primary developer of systemd. These articles were written between April 2010
and September 2011, but they're just as relevant now as they were then. Much of everything
else good that has been written about systemd and its ecosystem is based on these papers.

• Rethinking PID 1
• systemd for Administrators, Part I

Creative Commons Attribution Share-alike 4.0 14

http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://0pointer.de/blog/projects/systemd.html

• systemd for Administrators, Part II
• systemd for Administrators, Part III
• systemd for Administrators, Part IV
• systemd for Administrators, Part V
• systemd for Administrators, Part VI
• systemd for Administrators, Part VII
• systemd for Administrators, Part VIII
• systemd for Administrators, Part IX
• systemd for Administrators, Part X
• systemd for Administrators, Part XI

Creative Commons Attribution Share-alike 4.0 15

http://0pointer.de/blog/projects/inetd.html
http://0pointer.de/blog/projects/instances.html
http://0pointer.de/blog/projects/on-etc-sysinit.html
http://0pointer.de/blog/projects/the-new-configuration-files.html
http://0pointer.de/blog/projects/blame-game.html
http://0pointer.de/blog/projects/changing-roots
http://0pointer.de/blog/projects/three-levels-of-off.html
http://0pointer.de/blog/projects/systemd-for-admins-4.html
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://0pointer.de/blog/projects/systemd-for-admins-2.html

Understanding systemd at startup

In the previous chapter, I looked at systemd's functions and architecture and the controversy
around its role as a replacement for the old SystemV init program and startup scripts. In this
chapter, I explore the files and tools that manage the Linux startup sequence. I'll explain the
systemd startup sequence, how to change the default startup target (runlevel in SystemV
terms), and how to manually switch to a different target without going through a reboot.

I'll also look at two important systemd tools. The first is the systemctl command, which is the
primary means of interacting with and sending commands to systemd. The second is
journalctl, which provides access to the systemd journals that contain huge amounts of
system history data such as kernel and service messages (both informational and error
messages).

Be sure to use a non-production system for testing and experimentation in this and future
articles. Your test system needs to have a GUI desktop (such as Xfce, LXDE, Gnome, KDE, or
another) installed.

Exploring Linux startup with systemd
Before you can observe the startup sequence, you need to do a couple of things to make the
boot and startup sequences open and visible. Normally, most distributions use a startup
animation or splash screen to hide the detailed messages that would otherwise be displayed
during a Linux host's startup and shutdown. This is called the Plymouth boot screen on Red
Hat-based distros. Those hidden messages can provide a great deal of information about
startup and shutdown to a sysadmin looking for information to troubleshoot a bug or to just
learn about the startup sequence. You can change this using the GRUB (Grand Unified Boot
Loader) configuration.

Creative Commons Attribution Share-alike 4.0 16

The main GRUB configuration file is /boot/grub2/grub.cfg, but, because this file can be
overwritten when the kernel version is updated, you do not want to change it. Instead, modify
the /etc/default/grub file, which is used to modify the default settings of grub.cfg.

Start by looking at the current, unmodified version of the /etc/default/grub file:

cd /etc/default ; cat grub
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_testvm1-swap rd.lvm.
lv=fedora_testvm1/root rd.lvm.lv=fedora_testvm1/swap rd.lvm.lv=fedora_
testvm1/usr rhgb quiet"
GRUB_DISABLE_RECOVERY="true"

Chapter 6 of the GRUB documentation contains a list of all the possible entries in the
/etc/default/grub file, but I focus on the following:

• I change GRUB_TIMEOUT, the number of seconds for the GRUB menu countdown,
from five to 10 to give a bit more time to respond to the GRUB menu before the
countdown hits zero.

• I delete the last two parameters on GRUB_CMDLINE_LINUX, which lists the
command-line parameters that are passed to the kernel at boot time. One of these
parameters, rhgb stands for Red Hat Graphical Boot, and it displays the little Fedora
icon animation during the kernel initialization instead of showing boot-time messages.
The other, the quiet parameter, prevents displaying the startup messages that
document the progress of the startup and any errors that occur. I delete both rhgb and
quiet because sysadmins need to see these messages. If something goes wrong
during boot, messages on the screen can point to the cause of the problem.

After you make these changes, your GRUB file will look like:

cat grub
GRUB_TIMEOUT=10
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_testvm1-swap rd.lvm.
lv=fedora_testvm1/root rd.lvm.lv=fedora_testvm1/swap rd.lvm.lv=fedora_
testvm1/usr"
GRUB_DISABLE_RECOVERY="false"

Creative Commons Attribution Share-alike 4.0 17

http://www.gnu.org/software/grub/manual/grub

The grub2-mkconfig program generates the grub.cfg configuration file using the contents
of the /etc/default/grub file to modify some of the default GRUB settings. The grub2-
mkconfig program sends its output to STDOUT. It has a -o option that allows you to specify
a file to send the datastream to, but it is just as easy to use redirection. Run the following
command to update the /boot/grub2/grub.cfg configuration file:

grub2-mkconfig > /boot/grub2/grub.cfg
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-4.18.9-200.fc28.x86_64
Found initrd image: /boot/initramfs-4.18.9-200.fc28.x86_64.img
Found linux image: /boot/vmlinuz-4.17.14-202.fc28.x86_64
Found initrd image: /boot/initramfs-4.17.14-202.fc28.x86_64.img
Found linux image: /boot/vmlinuz-4.16.3-301.fc28.x86_64
Found initrd image: /boot/initramfs-4.16.3-301.fc28.x86_64.img
Found linux image: /boot/vmlinuz-0-rescue-7f12524278bd40e9b10a085bc82dc504
Found initrd image: /boot/initramfs-0-rescue-7f12524278bd40e9b10a085bc82dc504.img
done

Reboot your test system to view the startup messages that would otherwise be hidden behind
the Plymouth boot animation. But what if you need to view the startup messages and have
not disabled the Plymouth boot animation? Or you have, but the messages stream by too fast
to read? (Which they do.)

There are a couple of options, and both involve log files and systemd journals—which are your
friends. You can use the less command to view the contents of the /var/log/messages file.
This file contains boot and startup messages as well as messages generated by the operating
system during normal operation. You can also use the journalctl command without any
options to view the systemd journal, which contains essentially the same information:

journalctl
-- Logs begin at Sat 2020-01-11 21:48:08 EST, end at Fri 2020-04-03 08:54:30 EDT.
--
Jan 11 21:48:08 f31vm.both.org kernel: Linux version 5.3.7-301.fc31.x86_64
(mockbuild@bkernel03.phx2.fedoraproject.org) (gcc version 9.2.1 20190827 (Red Hat
9.2.1-1) (GCC)) #1 SMP Mon Oct >
Jan 11 21:48:08 f31vm.both.org kernel: Command line:
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.3.7-301.fc31.x86_64 root=/dev/mapper/VG01-root
ro resume=/dev/mapper/VG01-swap rd.lvm.lv=VG01/root rd>
Jan 11 21:48:08 f31vm.both.org kernel: x86/fpu: Supporting XSAVE feature 0x001:
'x87 floating point registers'
Jan 11 21:48:08 f31vm.both.org kernel: x86/fpu: Supporting XSAVE feature 0x002:
'SSE registers'
[...]

Creative Commons Attribution Share-alike 4.0 18

I truncated this datastream because it can be hundreds of thousands or even millions of lines
long. (The journal listing on my primary workstation is 1,188,482 lines long.) Be sure to try this
on your test system. If it has been running for some time—even if it has been rebooted many
times—huge amounts of data will be displayed. Explore this journal data. It contains a lot of
information that can be very useful when doing problem determination. Knowing what this
data looks like for a normal boot and startup can help you locate problems when they occur.

I will discuss systemd journals, the journalctl command, and how to sort through all of that
data to find what you want in more detail later in this book.

After GRUB loads the kernel into memory, it must first extract itself from the compressed
version of the file before it can perform any useful work. After the kernel has extracted itself
and started running, it loads systemd and turns control over to it.

This is the end of the boot process. At this point, the Linux kernel and systemd are running but
unable to perform any productive tasks for the end user because nothing else is running,
there's no shell to provide a command line, no background processes to manage the network
or other communication links, and nothing that enables the computer to perform any
productive function.

systemd can now load the functional units required to bring the system up to a selected
target run state.

Targets
A systemd target represents a Linux system's current or desired run state. Much like SystemV
start scripts, targets define the services that must be present for the system to run and be
active in that state. Figure 1 shows the possible run-state targets of a Linux system using
systemd. As seen in the first article of this series and in the systemd bootup man page (man
bootup), there are other intermediate targets that are required to enable various necessary
services. These can include swap.target, timers.target, local-fs.target, and more. Some
targets (like basic.target) are used as checkpoints to ensure that all the required services are
up and running before moving on to the next-higher level target.

Unless otherwise changed at boot time in the GRUB menu, systemd always starts the
default.target. The default.target file is a symbolic link to the true target file. For a desktop
workstation, this is typically going to be the graphical.target, which is equivalent to runlevel
5 in SystemV. For a server, the default is more likely to be the multi-user.target, which is like

Creative Commons Attribution Share-alike 4.0 19

runlevel 3 in SystemV. The emergency.target file is similar to single-user mode. Targets and
services are systemd units.

The following table, which I included in the previous article in this series, compares the
systemd targets with the old SystemV startup runlevels. The systemd target aliases are
provided by systemd for backward compatibility. The target aliases allow scripts—and
sysadmins—to use SystemV commands like init 3 to change runlevels. Of course, the
SystemV commands are forwarded to systemd for interpretation and execution.

systemd
targets

SystemV
runlevel

target aliases Description

default.target This target is always aliased with a symbolic link to
either multi-user.target or graphical.target.
systemd always uses the default.target to start the
system. The default.target should never be aliased
to halt.target, poweroff.target, or reboot.target.

graphical.target 5 runlevel5.target Multi-user.target with a GUI
 4 runlevel4.target Unused. Runlevel 4 was identical to runlevel 3 in the

SystemV world. This target could be created and
customized to start local services without changing
the default multi-user.target.

multi-user.target 3 runlevel3.target All services running, but command-line interface
(CLI) only

 2 runlevel2.target Multi-user, without NFS, but all other non-GUI
services running

rescue.target 1 runlevel1.target A basic system, including mounting the filesystems
with only the most basic services running and a rescue
shell on the main console

emergency.target S Single-user mode—no services are running;
filesystems are not mounted. This is the most basic
level of operation with only an emergency shell
running on the main console for the user to interact
with the system.

halt.target Halts the system without powering it down
reboot.target 6 runlevel6.target Reboot
poweroff.target 0 runlevel0.target Halts the system and turns the power off
Fig. 1: Comparison of SystemV runlevels with systemd targets and target aliases.

Each target has a set of dependencies described in its configuration file. systemd starts the
required dependencies, which are the services required to run the Linux host at a specific

Creative Commons Attribution Share-alike 4.0 20

level of functionality. When all of the dependencies listed in the target configuration files are
loaded and running, the system is running at that target level. If you want, you can review the
systemd startup sequence and runtime targets in the first article in this series, Learning to
love systemd.

Exploring the current target
Many Linux distributions default to installing a GUI desktop interface so that the installed
systems can be used as workstations. I always install from a Fedora Live boot USB drive with
an Xfce or LXDE desktop. Even when installing a server or other infrastructure type of host
(such as the ones I use for routers and firewalls), I use one of these installations that installs a
GUI desktop.

I could install a server without a desktop (and that would be typical for data centers), but that
does not meet my needs. It is not that I need the GUI desktop itself, but the LXDE installation
includes many of the other tools I use that are not in a default server installation. This means
less work for me after the initial installation.

But just because I have a GUI desktop does not mean it makes sense to use it. I have a 16-port
KVM that I can use to access the KVM interfaces of most of my Linux systems, but the vast
majority of my interaction with them is via a remote SSH connection from my primary
workstation. This way is more secure and uses fewer system resources to run multi-
user.target compared to graphical.target.

To begin, check the default target to verify that it is the graphical.target:

systemctl get-default
graphical.target

Now verify the currently running target. It should be the same as the default target. You can
still use the old method, which displays the old SystemV runlevels. Note that the previous
runlevel is on the left; it is N (which means None), indicating that the runlevel has not changed
since the host was booted. The number 5 indicates the current target, as defined in the old
SystemV terminology:

runlevel
N 5

Note that the runlevel man page indicates that runlevels are obsolete and provides a
conversion table.

Creative Commons Attribution Share-alike 4.0 21

https://opensource.com/article/20/4/systemd
https://opensource.com/article/20/4/systemd

You can also use the systemd method. There is no one-line answer here, but it does provide
the answer in systemd terms:

systemctl list-units --type target
UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Local Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network.target loaded active active Network
nfs-client.target loaded active active NFS client services
nss-user-lookup.target loaded active active User and Group Name Lookups
paths.target loaded active active Paths
remote-fs-pre.target loaded active active Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
rpc_pipefs.target loaded active active rpc_pipefs.target
slices.target loaded active active Slices
sockets.target loaded active active Sockets
sshd-keygen.target loaded active active sshd-keygen.target
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
timers.target loaded active active Timers

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

21 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

This shows all of the currently loaded and active targets. You can also see the
graphical.target and the multi-user.target. The multi-user.target is required before the
graphical.target can be loaded. In this example, the graphical.target is active.

Switching to a different target
Making the switch to the multi-user.target is easy:

systemctl isolate multi-user.target

Creative Commons Attribution Share-alike 4.0 22

The display now changes from the GUI desktop or login screen to a virtual console. Log in and
list the currently active systemd units to verify that graphical.target is no longer running:

systemctl list-units --type target

Be sure to use the runlevel command to verify that it shows both previous and current
"runlevels":

runlevel
5 3

Changing the default target
Now, change the default target to the multi-user.target so that it will always boot into the
multi-user.target for a console command-line interface rather than a GUI desktop interface.
As the root user on your test host, change to the directory where the systemd configuration is
maintained and do a quick listing:

cd /etc/systemd/system/ ; ll
drwxr-xr-x. 2 root root 4096 Apr 25 2018 basic.target.wants
<snip>
lrwxrwxrwx. 1 root root 36 Aug 13 16:23 default.target ->
/lib/systemd/system/graphical.target
lrwxrwxrwx. 1 root root 39 Apr 25 2018 display-manager.service ->
/usr/lib/systemd/system/lightdm.service
drwxr-xr-x. 2 root root 4096 Apr 25 2018 getty.target.wants
drwxr-xr-x. 2 root root 4096 Aug 18 10:16 graphical.target.wants
drwxr-xr-x. 2 root root 4096 Apr 25 2018 local-fs.target.wants
drwxr-xr-x. 2 root root 4096 Oct 30 16:54 multi-user.target.wants
[...]

I shortened this listing to highlight a few important things that will help explain how systemd
manages the boot process. You should be able to see the entire list of directories and links on
your virtual machine.

The default.target entry is a symbolic link (symlink, soft link) to the directory
/lib/systemd/system/graphical.target. List that directory to see what else is there:

ll /lib/systemd/system/ | less

Creative Commons Attribution Share-alike 4.0 23

You see files, directories, and more links in this listing, but look specifically for multi-
user.target and graphical.target. Now display the contents of default.target, which is a
link to /lib/systemd/system/graphical.target:

cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target display-manager.service
AllowIsolate=yes

This link to the graphical.target file describes all of the prerequisites and requirements that
the graphical user interface requires. I explore these options later in this book.

To enable the host to boot to multi-user mode, delete the existing link and create a new one
that points to the correct target:

cd /etc/systemd/system
rm -f default.target
ln -s /lib/systemd/system/multi-user.target default.target

List the default.target link to verify that it links to the correct file:

ll default.target
lrwxrwxrwx 1 root root 37 Nov 28 16:08 default.target ->
/lib/systemd/system/multi-user.target

If your link does not look exactly like this, delete it and try again. List the content of the
default.target link:

cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#

Creative Commons Attribution Share-alike 4.0 24

systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

[Unit]
Description=Multi-User System
Documentation=man:systemd.special(7)
Requires=basic.target
Conflicts=rescue.service rescue.target
After=basic.target rescue.service rescue.target
AllowIsolate=yes

The default.target—which is really a link to the multi-user.target at this point—now has
different requirements in the [Unit] section. It does not require the graphical display
manager.

Reboot. Your virtual machine should boot to the console login for virtual console 1, which is
identified on the display as tty1. Now that you know how to change the default target, change
it back to the graphical.target using a command designed for the purpose.

First, check the current default target:

systemctl get-default
multi-user.target
systemctl set-default graphical.target
Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target →
/usr/lib/systemd/system/graphical.target

Enter the following command to go directly to the graphical.target and the display manager
login page without having to reboot:

systemctl isolate default.target

I do not know why the term "isolate" was chosen for this sub-command by systemd's
developers. My research indicates that it may refer to running the specified target but
"isolating" and terminating all other targets that are not required to support the target.
However, the effect is to switch targets from one run target to another—in this case, from the
multi-user target to the graphical target. The command above is equivalent to the old init 5
command in SystemV start scripts and the init program.

Log into the GUI desktop, and verify that it's working.

Creative Commons Attribution Share-alike 4.0 25

Using the systemctl command to manage
systemd units
In the previous chapters, I explored the Linux systemd startup sequence. In the first, I looked
at systemd's functions and architecture and the controversy around its role as a replacement
for the old SystemV init program and startup scripts. And in the second, I examined two
important systemd tools, systemctl and journalctl, and explained how to switch from one
target to another and to change the default target.

In this chapter, I look at systemd units in more detail, and how to use the systemctl command
to explore and manage units. I also explain how to stop and disable units and how to create a
new systemd mount unit to mount a new filesystem and enable it to initiate during startup.

Preparation
All of the experiments in this chapter should be done as the root user (unless otherwise
specified). Some of the commands that simply list various systemd units can be performed by
non-root users, but the commands that make changes cannot. Make sure to do all of these
experiments only on non-production hosts or virtual machines (VMs).

One of these experiments requires the sysstat package, so install it before you move on. For
Fedora and other Red Hat-based distributions you can install sysstat with:

dnf -y install sysstat

The sysstat RPM installs several statistical tools that can be used for problem determination.
One is System Activity Report (SAR), which records many system performance data points at
regular intervals (every 10 minutes by default). Rather than run as a daemon in the
background, the sysstat package installs two systemd timers. One timer runs every 10 minutes
to collect data, and the other runs once a day to aggregate the daily data. In this article, I will
look briefly at these timers but wait to explain how to create a timer in a future article.

Creative Commons Attribution Share-alike 4.0 26

https://en.wikipedia.org/wiki/Sar_(Unix)

systemd suite
The fact is, systemd is more than just one program. It is a large suite of programs all designed
to work together to manage nearly every aspect of a running Linux system. A full exposition of
systemd would take a book on its own. Most of us do not need to understand all of the details
about how all of systemd's components fit together, so I will focus on the programs and
components that enable you to manage various Linux services and deal with log files and
journals.

Practical structure
The structure of systemd—outside of its executable files—is contained in its many
configuration files. Although these files have different names and identifier extensions, they
are all called "unit" files. Units are the basis of everything systemd.

Unit files are ASCII plain-text files that are accessible to and can be created or modified by a
sysadmin. There are a number of unit file types, and each has its own man page. Figure 1 lists
some of these unit file types by their filename extensions and a short description of each.

systemd unit Description
.automount The .automount units are used to implement on-demand (i.e., plug and play) and

mounting of filesystem units in parallel during startup.

.device The .device unit files define hardware and virtual devices that are exposed to the
sysadmin in the /dev/directory. Not all devices have unit files; typically, block
devices such as hard drives, network devices, and some others have unit files.

.mount The .mount unit defines a mount point on the Linux filesystem directory structure.

.scope The .scope unit defines and manages a set of system processes. This unit is not
configured using unit files, rather it is created programmatically. Per the
systemd.scope man page, “The main purpose of scope units is grouping worker
processes of a system service for organization and for managing resources.”

.service The .service unit files define processes that are managed by systemd. These include
services such as crond cups (Common Unix Printing System), iptables, multiple logical
volume management (LVM) services, NetworkManager, and more.

.slice The .slice unit defines a “slice,” which is a conceptual division of system resources that
are related to a group of processes. You can think of all system resources as a pie and
this subset of resources as a “slice” out of that pie.

.socket The .socket units define interprocess communication sockets, such as network
sockets.

.swap The .swap units define swap devices or files.

Creative Commons Attribution Share-alike 4.0 27

.target The .target units define groups of unit files that define startup synchronization
points, runlevels, and services. Target units define the services and other units that
must be active in order to start successfully.

.timer The .timer unit defines timers that can initiate program execution at specified times.
Fig. 1: Some systemd unit file types

systemctl
The systemctl command is used to start and stop services, configure them to launch (or not)
at system startup, and monitor the current status of running services.

In a terminal session with root priviledges, list all of the loaded and active systemd units.
systemctl automatically pipes its stdout data stream through the less pager, so you don't
have to:

systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
proc-sys-fs-binfmt_misc.automount loaded active running Arbitrary
Executable File>
sys-devices-pci0000:00-0000:00:01.1-ata7-host6-target6:0:0-6:0:0:0-block-
sr0.device loaded a>
sys-devices-pci0000:00-0000:00:03.0-net-enp0s3.device loaded active plugged
82540EM Gigabi>
sys-devices-pci0000:00-0000:00:05.0-sound-card0.device loaded active plugged
82801AA AC'97>
sys-devices-pci0000:00-0000:00:08.0-net-enp0s8.device loaded active plugged
82540EM Gigabi>
sys-devices-pci0000:00-0000:00:0d.0-ata1-host0-target0:0:0-0:0:0:0-block-sda-
sda1.device loa>
sys-devices-pci0000:00-0000:00:0d.0-ata1-host0-target0:0:0-0:0:0:0-block-sda-
sda2.device loa>
[...]

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

206 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

As you scroll through the data in your terminal session, look for some specific things. The first
section lists devices such as hard drives, sound cards, network interface cards, and TTY
devices. Another section shows the filesystem mount points. Other sections include various
services and a list of all loaded and active targets.

Creative Commons Attribution Share-alike 4.0 28

The sysstat timers at the bottom of the output are used to collect and generate daily system
activity summaries for SAR. SAR is a very useful problem-solving tool. (You can learn more
about it in Chapter 13 of my book Using and Administering Linux: Volume 1, Zero to SysAdmin:
Getting Started.)

Near the very bottom, three lines describe the meanings of the statuses (loaded, active, and
sub). Press q to exit the pager.

Use the following command (as suggested in the last line of the output above) to see all the
units that are installed, whether or not they are loaded. I won't reproduce the output here,
because you can scroll through it on your own. The systemctl program has an excellent tab-
completion facility that makes it easy to enter complex commands without needing to
memorize all the options:

systemctl list-unit-files

You can see that some units are disabled. Table 1 in the man page for systemctl lists and
provides short descriptions of the entries you might see in this listing. Use the -t (type)
option to view just the timer units:

systemctl list-unit-files -t timer
UNIT FILE STATE
chrony-dnssrv@.timer disabled
dnf-makecache.timer enabled
fstrim.timer disabled
logrotate.timer disabled
logwatch.timer disabled
mdadm-last-resort@.timer static
mlocate-updatedb.timer enabled
sysstat-collect.timer enabled
sysstat-summary.timer enabled
systemd-tmpfiles-clean.timer static
unbound-anchor.timer enabled

You can do the same thing with this alternative, which provides considerably more detail:

systemctl list-timers
Thu 2020-04-16 09:06:20 EDT 3min 59s left n/a n/a
systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.service
Thu 2020-04-16 10:02:01 EDT 59min left Thu 2020-04-16 09:01:32 EDT 49s ago
dnf-makecache.timer dnf-makecache.service
Thu 2020-04-16 13:00:00 EDT 3h 57min left n/a n/a
sysstat-collect.timer sysstat-collect.service

Creative Commons Attribution Share-alike 4.0 29

http://www.both.org/?page_id=1183
http://www.both.org/?page_id=1183

Fri 2020-04-17 00:00:00 EDT 14h left Thu 2020-04-16 12:51:37 EDT 3h 49min
left mlocate-updatedb.timer mlocate-updatedb.service
Fri 2020-04-17 00:00:00 EDT 14h left Thu 2020-04-16 12:51:37 EDT 3h 49min
left unbound-anchor.timer unbound-anchor.service
Fri 2020-04-17 00:07:00 EDT 15h left n/a n/a
sysstat-summary.timer sysstat-summary.service

6 timers listed.
Pass --all to see loaded but inactive timers, too.

Although there is no option to do systemctl list-mounts, you can list the mount point unit files:

systemctl list-unit-files -t mount
UNIT FILE STATE
-.mount generated
boot.mount generated
dev-hugepages.mount static
dev-mqueue.mount static
home.mount generated
proc-fs-nfsd.mount static
proc-sys-fs-binfmt_misc.mount disabled
run-vmblock\x2dfuse.mount disabled
sys-fs-fuse-connections.mount static
sys-kernel-config.mount static
sys-kernel-debug.mount static
tmp.mount generated
usr.mount generated
var-lib-nfs-rpc_pipefs.mount static
var.mount generated

15 unit files listed.

The STATE column in this data stream is interesting and requires a bit of explanation. The
"generated" states indicate that the mount unit was generated on the fly during startup using
the information in /etc/fstab. The program that generates these mount units is
/lib/systemd/system-generators/systemd-fstab-generator, along with other tools
that generate a number of other unit types. The "static" mount units are for filesystems like
/proc and /sys, and the files for these are located in the /usr/lib/systemd/system
directory.

Now look at the service units. This command will show all services installed on the host,
whether or not they are active:

systemctl --all -t service

Creative Commons Attribution Share-alike 4.0 30

The bottom of this listing of service units displays 166 as the total number of loaded units on
my host. Your number will probably differ.

Unit files do not have a filename extension (such as .unit) to help identify them, so you can
generalize that most configuration files that belong to systemd are unit files of one type or
another. The few remaining files are mostly .conf files located in /etc/systemd.

Unit files are stored in the /usr/lib/systemd directory and its subdirectories, while the
/etc/systemd/ directory and its subdirectories contain symbolic links to the unit files
necessary to the local configuration of this host.

To explore this, change directory to /etc/systemd and list its contents. Then change
directory to /etc/systemd/system and list its contents.

Take a look at the default.target file, which determines which runlevel target the system will
boot to. In the second article in this series, I explained how to change the default target from
the GUI (graphical.target) to the command-line only (multi-user.target) target. The
default.target file on my test VM is simply a symlink to
/usr/lib/systemd/system/graphical.target.

Examine the contents of the /etc/systemd/system/default.target file:

cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target display-manager.service
AllowIsolate=yes

Note that this requires the multi-user.target; the graphical.target cannot start if the
multi-user.target is not already up and running. It also says it "wants" the display-
manager.service unit. A "want" does not need to be fulfilled in order for the unit to start

Creative Commons Attribution Share-alike 4.0 31

successfully. If the "want" cannot be fulfilled, it will be ignored by systemd, and the rest of the
target will start regardless.

The subdirectories in /etc/systemd/system are lists of wants for various targets. Explore
the files and their contents in the /etc/systemd/system/graphical.target.wants directory.

The systemd.unit man page contains a lot of good information about unit files, their
structure, the sections they can be divided into, and the options that can be used. It also lists
many of the unit types, all of which have their own man pages. If you want to interpret a unit
file, this would be a good place to start.

Service units
A Fedora installation usually installs and enables services that particular hosts do not need for
normal operation. Conversely, sometimes it doesn't include services that need to be installed,
enabled, and started. Services that are not needed for the Linux host to function as desired,
but which are installed and possibly running, represent a security risk and should—at minimum
—be stopped and disabled and—at best—should be uninstalled.

The systemctl command is used to manage systemd units, including services, targets,
mounts, and more. Take a closer look at the list of services to identify services that will never
be used:

systemctl --all -t service
UNIT LOAD ACTIVE SUB DESCRIPTION
<snip>
chronyd.service loaded active running NTP client/server
crond.service loaded active running Command Scheduler
cups.service loaded active running CUPS Scheduler
dbus-daemon.service loaded active running D-Bus System Message
Bus
[...]
● ip6tables.service not-found inactive dead ip6tables.service
● ipset.service not-found inactive dead ipset.service
● iptables.service not-found inactive dead iptables.service
[...]
firewalld.service loaded active running firewalld - dynamic
firewall daemon
[...]
● ntpd.service not-found inactive dead ntpd.service
● ntpdate.service not-found inactive dead ntpdate.service
pcscd.service loaded active running PC/SC Smart Card
Daemon

Creative Commons Attribution Share-alike 4.0 32

I have pruned out most of the output from the command to save space. The services that
show "loaded active running" are obvious. The "not-found" services are ones that systemd is
aware of but are not installed on the Linux host. If you want to run those services, you must
install the packages that contain them.

Note the pcscd.service unit. This is the PC/SC smart-card daemon. Its function is to
communicate with smart-card readers. Many Linux hosts—including VMs—have no need for
this reader nor the service that is loaded and taking up memory and CPU resources. You can
stop this service and disable it, so it will not restart on the next boot. First, check its status:

systemctl status pcscd.service
● pcscd.service - PC/SC Smart Card Daemon
 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; indirect; vendor
preset: disabled)
 Active: active (running) since Fri 2019-05-10 11:28:42 EDT; 3 days ago
 Docs: man:pcscd(8)
 Main PID: 24706 (pcscd)
 Tasks: 6 (limit: 4694)
 Memory: 1.6M
 CGroup: /system.slice/pcscd.service
 └─24706 /usr/sbin/pcscd --foreground --auto-exit

May 10 11:28:42 testvm1 systemd[1]: Started PC/SC Smart Card Daemon.

This data illustrates the additional information systemd provides versus SystemV, which only
reports whether or not the service is running. Note that specifying the .service unit type is
optional. Now stop and disable the service, then re-check its status:

systemctl stop pcscd ; systemctl disable pcscd
Warning: Stopping pcscd.service, but it can still be activated by:
 pcscd.socket
Removed /etc/systemd/system/sockets.target.wants/pcscd.socket.
systemctl status pcscd
● pcscd.service - PC/SC Smart Card Daemon
 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; indirect;...)
 Active: failed (Result: exit-code) since Mon 2019-05-13 15:23:15 EDT; 48s ago
 Main PID: 24706 (code=exited, status=1/FAILURE)

May 10 11:28:42 testvm1 systemd[1]: Started PC/SC Smart Card Daemon.
May 13 15:23:15 testvm1 systemd[1]: Stopping PC/SC Smart Card Daemon...
May 13 15:23:15 testvm1 systemd[1]: pcscd.service: Main process exited,
code=exited, status=1/FAIL>
May 13 15:23:15 testvm1 systemd[1]: pcscd.service: Failed with 'exit-code'.
May 13 15:23:15 testvm1 systemd[1]: Stopped PC/SC Smart Card Daemon.

Creative Commons Attribution Share-alike 4.0 33

The short log entry display for most services prevents having to search through various log
files to locate this type of information. Check the status of the system runlevel targets—
specifying the "target" unit type is required:

systemctl status multi-user.target
● multi-user.target - Multi-User System
 Loaded: loaded (/usr/lib/systemd/system/multi-user.target; static; vendor
preset: disabled)
 Active: active since Thu 2019-05-09 13:27:22 EDT; 4 days ago
 Docs: man:systemd.special(7)

May 09 13:27:22 testvm1 systemd[1]: Reached target Multi-User System.
systemctl status graphical.target
● graphical.target - Graphical Interface
 Loaded: loaded (/usr/lib/systemd/system/graphical.target; indirect; vendor
preset: disabled)
 Active: active since Thu 2019-05-09 13:27:22 EDT; 4 days ago
 Docs: man:systemd.special(7)

May 09 13:27:22 testvm1 systemd[1]: Reached target Graphical Interface.
systemctl status default.target
● graphical.target - Graphical Interface
 Loaded: loaded (/usr/lib/systemd/system/graphical.target; indirect; vendor
preset: disabled)
 Active: active since Thu 2019-05-09 13:27:22 EDT; 4 days ago
 Docs: man:systemd.special(7)

May 09 13:27:22 testvm1 systemd[1]: Reached target Graphical Interface.

The default target is the graphical target. The status of any unit can be checked in this way.

Mounts the old way
A mount unit defines all of the parameters required to mount a filesystem on a designated
mount point. systemd can manage mount units with more flexibility than those using the
/etc/fstab filesystem configuration file. Despite this, systemd still uses the /etc/fstab file
for filesystem configuration and mounting purposes. systemd uses the systemd-fstab-
generator tool to create transient mount units from the data in the fstab file.

I will create a new filesystem and a systemd mount unit to mount it. If you have some available
disk space on your test system, you can do it along with me.

Note that the volume group and logical volume names may be different on your test system.
Be sure to use the names that are pertinent to your system.

Creative Commons Attribution Share-alike 4.0 34

You need to create a partition or logical volume, then make an EXT4 filesystem on it. Add a
label to the filesystem, TestFS, and create a directory for a mount point /TestFS.

To try this on your own, first, verify that you have free space on the volume group. Here is
what that looks like on my VM where I have some space available on the volume group to
create a new logical volume:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 120G 0 disk
├─sda1 8:1 0 4G 0 part /boot
└─sda2 8:2 0 116G 0 part
 ├─VG01-root 253:0 0 5G 0 lvm /
 ├─VG01-swap 253:1 0 8G 0 lvm [SWAP]
 ├─VG01-usr 253:2 0 30G 0 lvm /usr
 ├─VG01-home 253:3 0 20G 0 lvm /home
 ├─VG01-var 253:4 0 20G 0 lvm /var
 └─VG01-tmp 253:5 0 10G 0 lvm /tmp
sr0 11:0 1 1024M 0 rom
vgs
 VG #PV #LV #SN Attr VSize VFree
 VG01 1 6 0 wz--n- <116.00g <23.00g

Then create a new volume on VG01 named TestFS. It does not need to be large; 1GB is fine.
Then create a filesystem, add the filesystem label, and create the mount point:

lvcreate -L 1G -n TestFS VG01
 Logical volume "TestFS" created.
mkfs -t ext4 /dev/mapper/VG01-TestFS
mke2fs 1.45.3 (14-Jul-2019)
Creating filesystem with 262144 4k blocks and 65536 inodes
Filesystem UUID: 8718fba9-419f-4915-ab2d-8edf811b5d23
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done

e2label /dev/mapper/VG01-TestFS TestFS
mkdir /TestFS

Mount the new filesystem (it fails, but try it anyway):

mount /TestFS/
mount: /TestFS/: can't find in /etc/fstab.

Creative Commons Attribution Share-alike 4.0 35

Mounting the volume doesn't work, because you don't have an entry in /etc/fstab. You can
mount the new filesystem even without the entry in /etc/fstab using both the device name
(as it appears in /dev) and the mount point. Mounting in this manner is simpler than it used to
be—it used to require the filesystem type as an argument. The mount command is now smart
enough to detect the filesystem type and mount it accordingly.

Try it again:

mount /dev/mapper/VG01-TestFS /TestFS/
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 120G 0 disk
├─sda1 8:1 0 4G 0 part /boot
└─sda2 8:2 0 116G 0 part
 ├─VG01-root 253:0 0 5G 0 lvm /
 ├─VG01-swap 253:1 0 8G 0 lvm [SWAP]
 ├─VG01-usr 253:2 0 30G 0 lvm /usr
 ├─VG01-home 253:3 0 20G 0 lvm /home
 ├─VG01-var 253:4 0 20G 0 lvm /var
 ├─VG01-tmp 253:5 0 10G 0 lvm /tmp
 └─VG01-TestFS 253:6 0 1G 0 lvm /TestFS
sr0 11:0 1 1024M 0 rom

Now the new filesystem is mounted in the proper location. List the mount unit files:

systemctl list-unit-files -t mount

This command does not show a file for the /TestFS filesystem because no file exists for it.
The command systemctl status TestFS.mount does not display any information about the
new filesystem either. You can try it using wildcards with the systemctl status command:

systemctl status *mount
● usr.mount - /usr
 Loaded: loaded (/etc/fstab; generated)
 Active: active (mounted)
 Where: /usr
 What: /dev/mapper/VG01-usr
 Docs: man:fstab(5)
 man:systemd-fstab-generator(8)

[...]
● TestFS.mount - /TestFS
 Loaded: loaded (/proc/self/mountinfo)
 Active: active (mounted) since Fri 2020-04-17 16:02:26 EDT; 1min 18s ago
 Where: /TestFS
 What: /dev/mapper/VG01-TestFS

Creative Commons Attribution Share-alike 4.0 36

● run-user-0.mount - /run/user/0
 Loaded: loaded (/proc/self/mountinfo)
 Active: active (mounted) since Thu 2020-04-16 08:52:29 EDT; 1 day 5h ago
 Where: /run/user/0
 What: tmpfs

● var.mount - /var
 Loaded: loaded (/etc/fstab; generated)
 Active: active (mounted) since Thu 2020-04-16 12:51:34 EDT; 1 day 1h ago
 Where: /var
 What: /dev/mapper/VG01-var
 Docs: man:fstab(5)
 man:systemd-fstab-generator(8)
 Tasks: 0 (limit: 19166)
 Memory: 212.0K
 CPU: 5ms
 CGroup: /system.slice/var.mount

This command provides some very interesting information about your system's mounts, and
your new filesystem shows up. The /var and /usr filesystems are identified as being
generated from /etc/fstab, while your new filesystem simply shows that it is loaded and
provides the location of the info file in the /proc/self/mountinfo file.

Next, automate this mount. First, do it the old-fashioned way by adding an entry in
/etc/fstab. Later, I'll show you how to do it the new way, which will teach you about creating
units and integrating them into the startup sequence.

Unmount /TestFS and add the following line to the /etc/fstab file:

/dev/mapper/VG01-TestFS /TestFS ext4 defaults 1 2

Now, mount the filesystem with the simpler mount command and list the mount units again:

mount /TestFS
systemctl status *mount
[...]
● TestFS.mount - /TestFS
 Loaded: loaded (/proc/self/mountinfo)
 Active: active (mounted) since Fri 2020-04-17 16:26:44 EDT; 1min 14s ago
 Where: /TestFS
 What: /dev/mapper/VG01-TestFS
[...]

Creative Commons Attribution Share-alike 4.0 37

This did not change the information for this mount because the filesystem was manually
mounted. Reboot and run the command again, and this time specify TestFS.mount rather
than using the wildcard. The results for this mount are now consistent with it being mounted
at startup:

systemctl status TestFS.mount
● TestFS.mount - /TestFS
 Loaded: loaded (/etc/fstab; generated)
 Active: active (mounted) since Fri 2020-04-17 16:30:21 EDT; 1min 38s ago
 Where: /TestFS
 What: /dev/mapper/VG01-TestFS
 Docs: man:fstab(5)
 man:systemd-fstab-generator(8)
 Tasks: 0 (limit: 19166)
 Memory: 72.0K
 CPU: 6ms
 CGroup: /system.slice/TestFS.mount

Apr 17 16:30:21 testvm1 systemd[1]: Mounting /TestFS...
Apr 17 16:30:21 testvm1 systemd[1]: Mounted /TestFS.

Creating a mount unit
Mount units may be configured either with the traditional /etc/fstab file or with systemd
units. Fedora uses the fstab file as it is created during the installation. However, systemd uses
the systemd-fstab-generator program to translate the fstab file into systemd units for
each entry in the fstab file. Now that you know you can use systemd .mount unit files for
filesystem mounting, try it out by creating a mount unit for this filesystem.

First, unmount /TestFS. Edit the /etc/fstab file and delete or comment out the TestFS line.
Now, create a new file with the name TestFS.mount in the /etc/systemd/system directory.
Edit it to contain the configuration data below. The unit file name and the name of the mount
point must be identical, or the mount will fail:

This mount unit is for the TestFS filesystem
By David Both
Licensed under GPL V2
This file should be located in the /etc/systemd/system directory

[Unit]
Description=TestFS Mount

[Mount]

Creative Commons Attribution Share-alike 4.0 38

What=/dev/mapper/VG01-TestFS
Where=/TestFS
Type=ext4
Options=defaults

[Install]
WantedBy=multi-user.target

The Description line in the [Unit] section is for us humans, and it provides the name that's
shown when you list mount units with systemctl -t mount. The data in the [Mount] section
of this file contains essentially the same data that would be found in the fstab file.

Now enable the mount unit:

systemctl enable TestFS.mount
Created symlink /etc/systemd/system/multi-user.target.wants/TestFS.mount →
/etc/systemd/system/TestFS.mount.

This creates the symlink in the /etc/systemd/system directory, which will cause this mount
unit to be mounted on all subsequent boots. The filesystem has not yet been mounted, so you
must "start" it:

systemctl start TestFS.mount

Verify that the filesystem has been mounted:

systemctl status TestFS.mount
● TestFS.mount - TestFS Mount
 Loaded: loaded (/etc/systemd/system/TestFS.mount; enabled; vendor preset:
disabled)
 Active: active (mounted) since Sat 2020-04-18 09:59:53 EDT; 14s ago
 Where: /TestFS
 What: /dev/mapper/VG01-TestFS
 Tasks: 0 (limit: 19166)
 Memory: 76.0K
 CPU: 3ms
 CGroup: /system.slice/TestFS.mount

Apr 18 09:59:53 testvm1 systemd[1]: Mounting TestFS Mount...
Apr 18 09:59:53 testvm1 systemd[1]: Mounted TestFS Mount.

This experiment has been specifically about creating a unit file for a mount, but it can be
applied to other types of unit files as well. The details will be different, but the concepts are
the same. Yes, I know it is still easier to add a line to the /etc/fstab file than it is to create a

Creative Commons Attribution Share-alike 4.0 39

mount unit. But this is a good example of how to create a unit file because systemd does not
have generators for every type of unit.

In summary
This article looked at systemd units in more detail and how to use the systemctl command to
explore and manage units. It also showed how to stop and disable units and create a new
systemd mount unit to mount a new filesystem and enable it to initiate during startup.

Creative Commons Attribution Share-alike 4.0 40

Start using systemd as a
troubleshooting tool

No one would really consider systemd to be a troubleshooting tool, but when I encountered a
problem on my webserver, my growing knowledge of systemd and some of its features helped
me locate and circumvent the problem.

The problem was that my server, yorktown, which provides name services, DHCP, NTP,
HTTPD, and SendMail email services for my home office network, failed to start the Apache
HTTPD daemon during normal startup. I had to start it manually after I realized that it was not
running. The problem had been going on for some time, and I recently got around to trying to
fix it.

Some of you will say that systemd itself is the cause of this problem, and, based on what I
know now, I agree with you. However, I had similar types of problems with SystemV. (In the
first article in this series, I looked at the controversy around systemd as a replacement for the
old SystemV init program and startup scripts.

No software is perfect, and neither systemd nor SystemV is an exception, but systemd
provides far more information for problem-solving than SystemV ever offered.

Determining the problem
The first step to finding the source of this problem is to determine the httpd service's status:

systemctl status httpd
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset:
disabled)
 Active: failed (Result: exit-code) since Thu 2020-04-16 11:54:37; 15min ago
 Docs: man:httpd.service(8)
 Process: 1101 ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND (code=exited,
status=1/FAILURE)

Creative Commons Attribution Share-alike 4.0 41

https://opensource.com/article/20/4/systemd

 Main PID: 1101 (code=exited, status=1/FAILURE)
 Status: "Reading configuration..."
 CPU: 60ms

Apr 16 11:54:35 yorktown.both.org systemd[1]: Starting The Apache HTTP Server...
Apr 16 11:54:37 yorktown.both.org httpd[1101]: (99)Cannot assign requested
address: AH00072: make_sock: could not bind to address 192.168.0.52:80
Apr 16 11:54:37 yorktown.both.org httpd[1101]: no listening sockets available,
shutting down
Apr 16 11:54:37 yorktown.both.org httpd[1101]: AH00015: Unable to open logs
Apr 16 11:54:37 yorktown.both.org systemd[1]: httpd.service: Main process exited,
code=exited, status=1/FAILURE
Apr 16 11:54:37 yorktown.both.org systemd[1]: httpd.service: Failed with result
'exit-code'.
Apr 16 11:54:37 yorktown.both.org systemd[1]: Failed to start The Apache HTTP
Server.

This status information is one of the systemd features that I find much more useful than
anything SystemV offers. The amount of helpful information here leads me easily to a logical
conclusion that takes me in the right direction. All I ever got from the old chkconfig
command is whether or not the service is running and the process ID (PID) if it is. That isn't
very helpful.

The key entry in this status report shows that HTTPD cannot bind to the IP address, which
means it cannot accept incoming requests. This indicates that the network is not starting fast
enough to be ready for the HTTPD service to bind to the IP address because the IP address
has not yet been set. This is not supposed to happen, so I explored my network service
systemd startup configuration files; all appeared to be correct with the right "after" and
"requires" statements. Here is the /lib/systemd/system/httpd.service file from my server:

Modifying this file in-place is not recommended, because changes
will be overwritten during package upgrades. To customize the
behaviour, run "systemctl edit httpd" to create an override unit.

For example, to pass additional options (such as -D definitions) to
the httpd binary at startup, create an override unit (as is done by
systemctl edit) and enter the following:

[Service]
Environment=OPTIONS=-DMY_DEFINE

[Unit]
Description=The Apache HTTP Server
Wants=httpd-init.service
After=network.target remote-fs.target nss-lookup.target httpd-init.service
Documentation=man:httpd.service(8)

Creative Commons Attribution Share-alike 4.0 42

[Service]
Type=notify
Environment=LANG=C

ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
Send SIGWINCH for graceful stop
KillSignal=SIGWINCH
KillMode=mixed
PrivateTmp=true

[Install]
WantedBy=multi-user.target

The httpd.service unit file explicitly specifies that it should load after the network.target
and the httpd-init.service (among others). I tried to find all of these services using the
systemctl list-units command and searching for them in the resulting data stream. All were
present and should have ensured that the httpd service did not load before the network IP
address was set.

First solution
A bit of searching on the internet confirmed that others had encountered similar problems
with httpd and other services. This appears to happen because one of the required services
indicates to systemd that it has finished its startup—but it actually spins off a child process
that has not finished. After a bit more searching, I came up with a circumvention.

I could not figure out why the IP address was taking so long to be assigned to the network
interface card. So, I thought that if I could delay the start of the HTTPD service by a
reasonable amount of time, the IP address would be assigned by that time.

Fortunately, the /lib/systemd/system/httpd.service file above provides some direction.
Although it says not to alter it, it does indicate how to proceed: Use the command systemctl
edit httpd, which automatically creates a new file
(/etc/systemd/system/httpd.service.d/override.conf) and opens the GNU Nano editor.
(If you are not familiar with Nano, be sure to look at the hints at the bottom of the Nano
interface.)

Add the following text to the new file and save it:

cd /etc/systemd/system/httpd.service.d/

Creative Commons Attribution Share-alike 4.0 43

https://www.nano-editor.org/

ll
total 4
-rw-r--r-- 1 root root 243 Apr 16 11:43 override.conf
[root@yorktown httpd.service.d]# cat override.conf
Trying to delay the startup of httpd so that the network is
fully up and running so that httpd can bind to the correct
IP address
#
By David Both, 2020-04-16

[Service]
ExecStartPre=/bin/sleep 30

The [Service] section of this override file contains a single line that delays the start of the
HTTPD service by 30 seconds. The following status command shows the service status during
the wait time:

systemctl status httpd
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset:
disabled)
 Drop-In: /etc/systemd/system/httpd.service.d
 └─override.conf
 /usr/lib/systemd/system/httpd.service.d
 └─php-fpm.conf
 Active: activating (start-pre) since Thu 2020-04-16 12:14:29 EDT; 28s ago
 Docs: man:httpd.service(8)
Cntrl PID: 1102 (sleep)
 Tasks: 1 (limit: 38363)
 Memory: 260.0K
 CPU: 2ms
 CGroup: /system.slice/httpd.service
 └─1102 /bin/sleep 30

Apr 16 12:14:29 yorktown.both.org systemd[1]: Starting The Apache HTTP Server...
Apr 16 12:15:01 yorktown.both.org systemd[1]: Started The Apache HTTP Server.

And this command shows the status of the HTTPD service after the 30-second delay expires.
The service is up and running correctly:

systemctl status httpd
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset:
disabled)
 Drop-In: /etc/systemd/system/httpd.service.d
 └─override.conf
 /usr/lib/systemd/system/httpd.service.d

Creative Commons Attribution Share-alike 4.0 44

 └─php-fpm.conf
 Active: active (running) since Thu 2020-04-16 12:15:01 EDT; 1min 18s ago
 Docs: man:httpd.service(8)
 Process: 1102 ExecStartPre=/bin/sleep 30 (code=exited, status=0/SUCCESS)
 Main PID: 1567 (httpd)
 Status: "Total requests: 0; Idle/Busy workers 100/0;Requests/sec: 0; Bytes
served/sec: 0 B/sec"
 Tasks: 213 (limit: 38363)
 Memory: 21.8M
 CPU: 82ms
 CGroup: /system.slice/httpd.service
 ├─1567 /usr/sbin/httpd -DFOREGROUND
 ├─1569 /usr/sbin/httpd -DFOREGROUND
 ├─1570 /usr/sbin/httpd -DFOREGROUND
 ├─1571 /usr/sbin/httpd -DFOREGROUND
 └─1572 /usr/sbin/httpd -DFOREGROUND

Apr 16 12:14:29 yorktown.both.org systemd[1]: Starting The Apache HTTP Server...
Apr 16 12:15:01 yorktown.both.org systemd[1]: Started The Apache HTTP Server.

I could have experimented to see if a shorter delay would work as well, but my system is not
that critical, so I decided not to. It works reliably as it is, so I am happy.

Because I gathered all this information, I reported it to Red Hat Bugzilla as Bug 1825554. I
believe that it is much more productive to report bugs than it is to complain about them.

The better solution
A couple of days after reporting this as a bug, I received a response indicating that systemd is
just the manager, and if httpd needs to be ordered after some requirements are met, it needs
to be expressed in the unit file. The response pointed me to the httpd.service man page. I
wish I had found this earlier because it is a better solution than the one I came up with. This
solution is explicitly targeted to the prerequisite target unit rather than a somewhat random
delay.

From the httpd.service man page :

Starting the service at boot time

The httpd.service and httpd.socket units are disabled by default. To start the httpd
service at boot time, run: systemctl enable httpd.service. In the default
configuration, the httpd daemon will accept connections on port 80 (and, if

Creative Commons Attribution Share-alike 4.0 45

https://www.mankier.com/8/httpd.service#Description-Starting_the_service_at_boot_time
https://www.mankier.com/8/httpd.service#Description-Starting_the_service_at_boot_time
https://bugzilla.redhat.com/show_bug.cgi?id=1825554

mod_ssl is installed, TLS connections on port 443) for any configured IPv4 or IPv6
address.

If httpd is configured to depend on any specific IP address (for example, with a
"Listen" directive) which may only become available during start-up, or if httpd
depends on other services (such as a database daemon), the service must be
configured to ensure correct start-up ordering.

For example, to ensure httpd is only running after all configured network interfaces
are configured, create a drop-in file (as described above) with the following
section:

[Unit]
After=network-online.target
Wants=network-online.target

I still think this is a bug because it is quite common—at least in my experience—to use a Listen
directive in the httpd.conf configuration file. I have always used Listen directives, even on
hosts with only a single IP address, and it is clearly necessary on hosts with multiple network
interface cards (NICs) and internet protocol (IP) addresses. Adding the lines above to the
/usr/lib/systemd/system/httpd.service default file would not cause problems for
configurations that do not use a Listen directive, and prevents this problem for those that do.

In the meantime, I will use the suggested solution.

Next steps
This article describes a problem I had with starting the Apache HTTPD service on my server. It
leads you through the problem determination steps I took and shows how I used systemd to
assist. I also covered the circumvention I implemented using systemd and the better solution
that followed from my bug report.

It's likely that this is the result of a problem with systemd, specifically the configuration for
httpd startup. Nevertheless, systemd provided me with the tools to locate the likely source of
the problem and to formulate and implement a circumvention. Neither solution really resolves
the problem to my satisfaction.

One of the things I discovered during this is process is that I need to learn more about
defining the sequences in which things start!

Creative Commons Attribution Share-alike 4.0 46

Manage startup using systemd

While setting up a Linux system recently, I wanted to know how to ensure that dependencies
for services and other units were up and running before those dependent services and units
start. Specifically, I needed more knowledge of how systemd manages the startup sequence,
especially in determining the order services are started in what is essentially a parallel system.

You may know that SystemV (systemd's predecessor) orders the startup sequence by naming
the startup scripts with an SXX prefix, where XX is a number from 00 to 99. SystemV then
uses the sort order by name and runs each start script in sequence for the desired runlevel.

But systemd uses unit files, which can be created or modified by a sysadmin, to define
subroutines for not only initialization but also for regular operation. In the third article in this
series, I explained how to create a mount unit file. In this fifth article, I demonstrate how to
create a different type of unit file—a service unit file that runs a program at startup. You can
also change certain configuration settings in the unit file and use the systemd journal to view
the location of your changes in the startup sequence.

Preparation
Make sure you have removed rhgb and quiet from the GRUB_CMDLINE_LINUX= line in the
/etc/default/grub file. This enables you to observe the Linux startup message stream,
which you'll need for some of the experiments in this article.

The program
In this tutorial, you will create a simple program that enables you to observe a message during
startup on the console and later in the systemd journal.

Create the shell program /usr/local/bin/hello.sh and add the following content. You
want to ensure that the result is visible during startup and that you can easily find it when
looking through the systemd journal. You will use a version of the "Hello world" program with

Creative Commons Attribution Share-alike 4.0 47

https://opensource.com/article/20/5/systemd-units

some bars around it, so it stands out. Make sure the file is executable and has user and group
ownership by root with 700 permissions for security:

#!/usr/bin/bash
Simple program to use for testing startup configurations
with systemd.
By David Both
Licensed under GPL V2
#
echo "######### Hello World! ########"

Run this program from the command line to verify that it works correctly:

./hello.sh
######### Hello World! ########

This program could be created in any scripting or compiled language. The hello.sh program
could also be located in other places based on the Linux filesystem hierarchical structure
(FHS). I place it in the /usr/local/bin directory so that it can be easily run from the
command line without having to prepend a path when I type the command. I find that many of
the shell programs I create need to be run from the command line and by other tools such as
systemd.

The service unit file
Create the service unit file /etc/systemd/system/hello.service with the following
content. This file does not need to be executable, but for security, it does need user and
group ownership by root and 644 or 640 permissions:

Simple service unit file to use for testing
startup configurations with systemd.
By David Both
Licensed under GPL V2
#

[Unit]
Description=My hello shell script

[Service]
Type=oneshot
ExecStart=/usr/local/bin/hello.sh

[Install]
WantedBy=multi-user.target

Creative Commons Attribution Share-alike 4.0 48

https://chmodcommand.com/chmod-640/
https://chmodcommand.com/chmod-644/
https://opensource.com/life/16/10/introduction-linux-filesystems
https://chmodcommand.com/chmod-700/

Verify that the service unit file performs as expected by viewing the service status. Any
syntactical errors will show up here:

systemctl status hello.service
● hello.service - My hello shell script
 Loaded: loaded (/etc/systemd/system/hello.service; disabled; vendor preset:
disabled)
 Active: inactive (dead)

You can run this "oneshot" service type multiple times without problems. The oneshot type is
intended for services where the program launched by the service unit file is the main process
and must complete before systemd starts any dependent process.

There are seven service types, and you can find an explanation of each (along with the other
parts of a service unit file) in the systemd.service(5) man page. (You can also find more
information in the resources at the end of this article.)

As curious as I am, I wanted to see what an error might look like. So, I deleted the "o" from the
Type=oneshot line, so it looked like Type=neshot, and ran the command again:

systemctl status hello.service
● hello.service - My hello shell script
 Loaded: loaded (/etc/systemd/system/hello.service; disabled; vendor preset:
disabled)
 Active: inactive (dead)

May 06 08:50:09 testvm1.both.org systemd[1]:
/etc/systemd/system/hello.service:12: Failed to parse service type, ignoring:
neshot

These results told me where the error was and made it very easy to resolve the problem.

Just be aware that even after you restore the hello.service file to its original form, the
error will persist. Although a reboot will clear the error, you should not have to do that, so I
went looking for a method to clear out persistent errors like this. I have encountered service
errors that require the command systemctl daemon-reload to reset an error condition,
but that did not work in this case. The error messages that can be fixed with this command
always seem to have a statement to that effect, so you know to run it.

It is, however, recommended that you run systemctl daemon-reload after changing a
unit file or creating a new one. This notifies systemd that the changes have been made, and it
can prevent certain types of issues with managing altered services or units. Go ahead and run
this command.

Creative Commons Attribution Share-alike 4.0 49

https://opensource.com/article/20/5/manage-startup-systemd#resources
http://man7.org/linux/man-pages/man5/systemd.service.5.html

After correcting the misspelling in the service unit file, a simple systemctl restart
hello.service cleared the error. Experiment a bit by introducing some other errors into the
hello.service file to see what kinds of results you get.

Start the service
Now you are ready to start the new service and check the status to see the result. Although
you probably did a restart in the previous section, you can start or restart a oneshot service as
many times as you want since it runs once and then exits.

Go ahead and start the service (as shown below), and then check the status. Depending upon
how much you experimented with errors, your results may differ from mine:

systemctl start hello.service
systemctl status hello.service
● hello.service - My hello shell script
 Loaded: loaded (/etc/systemd/system/hello.service; disabled; vendor preset)
 Active: inactive (dead)

May 10 10:37:49 testvm1.both.org hello.sh[842]: ######### Hello World! ########
May 10 10:37:49 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:37:49 testvm1.both.org systemd[1]: Finished My hello shell script.
May 10 10:54:45 testvm1.both.org systemd[1]: Starting My hello shell script...
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ######### Hello World! ########
May 10 10:54:45 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:54:45 testvm1.both.org systemd[1]: Finished My hello shell script.

Notice in the status command's output that the systemd messages indicate that the
hello.sh script started and the service completed. You can also see the output from the
script. This display is generated from the journal entries of the most recent invocations of the
service. Try starting the service several times, and then run the status command again to see
what I mean.

You should also look at the journal contents directly; there are multiple ways to do this. One
way is to specify the record type identifier, in this case, the name of the shell script. This
shows the journal entries for previous reboots as well as the current session. As you can see, I
have been researching and testing for this article for some time now:

journalctl -t hello.sh
[...]
-- Reboot --
May 08 15:55:47 testvm1.both.org hello.sh[840]: ######### Hello World! ########
-- Reboot --

Creative Commons Attribution Share-alike 4.0 50

May 08 16:01:51 testvm1.both.org hello.sh[840]: ######### Hello World! ########
-- Reboot --
May 10 10:37:49 testvm1.both.org hello.sh[842]: ######### Hello World! ########
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ######### Hello World! ########

To locate the systemd records for the hello.service unit, you can search on systemd. You
can use G+Enter to page to the end of the journal entries and then scroll back to locate the
ones you're interested in. Use the -b option to show only the most recent startup:

journalctl -b -t systemd
[...]
May 10 10:37:49 testvm1.both.org systemd[1]: Starting SYSV: Late init script for
live image....
May 10 10:37:49 testvm1.both.org systemd[1]: Started SYSV: Late init script for
live image..
May 10 10:37:49 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:37:49 testvm1.both.org systemd[1]: Finished My hello shell script.
May 10 10:37:50 testvm1.both.org systemd[1]: Starting D-Bus System Message Bus...
May 10 10:37:50 testvm1.both.org systemd[1]: Started D-Bus System Message Bus.

I copied a few other journal entries to give you an idea of what you might find. This command
spews all of the journal lines pertaining to systemd—109,183 lines when I wrote this. That is a
lot of data to sort through. You can use the pager's search facility, which is usually less, or
you can use the built-in grep feature. The -g (or --grep=) option uses Perl-compatible
regular expressions:

journalctl -b -t systemd -g "hello"
journalctl -b -t systemd -g "hello"
-- Logs begin at Tue 2020-05-05 18:11:49 EDT, end at Sun 2020-05-10 11:01:01 EDT.
May 10 10:37:49 testvm1.both.org systemd[1]: Starting My hello shell script...
May 10 10:37:49 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:37:49 testvm1.both.org systemd[1]: Finished My hello shell script.
May 10 10:54:45 testvm1.both.org systemd[1]: Starting My hello shell script...
May 10 10:54:45 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:54:45 testvm1.both.org systemd[1]: Finished My hello shell script.

You could use the standard GNU grep command, but that would not show the log metadata
in the first line.

If you do not want to see just the journal entries pertaining to your hello service, you can
narrow things down a bit by specifying a time range. For example, I will start with the
beginning time of 10:54:00 on my test VM, which was the start of the minute the entries
above are from. Note that the --since= option must be enclosed in quotes and that this
option can also be expressed as -S "<time specification>".

Creative Commons Attribution Share-alike 4.0 51

The date and time will be different on your host, so be sure to use the timestamps that match
the times in your journals:

journalctl --since="2020-05-10 10:54:00"
May 10 10:54:35 testvm1.both.org audit: BPF prog-id=54 op=LOAD
May 10 10:54:35 testvm1.both.org audit: BPF prog-id=55 op=LOAD
May 10 10:54:45 testvm1.both.org systemd[1]: Starting My hello shell script...
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ###############################
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ######### Hello World! ########
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ###############################
May 10 10:54:45 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:54:45 testvm1.both.org systemd[1]: Finished My hello shell script.
May 10 10:54:45 testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd"'
May 10 10:54:45 testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd/"'
May 10 10:56:00 testvm1.both.org NetworkManager[840]: <error> [1589122560.0633]
dhcp4 (enp0s3): error -113 dispatching events
May 10 10:56:00 testvm1.both.org NetworkManager[840]: <info> [1589122560.0634]
dhcp4 (enp0s3): state changed bound -> fail
[...]

The since specification skips all of the entries before that time, but there are still a lot of
entries after that time that you do not need. You can also use the until option to trim off
the entries that come a bit after the time you are interested in. I want the entire minute when
the event occurred and nothing more:

journalctl --since="2020-05-10 10:54:35" --until="2020-05-10 10:55:00"
-- Logs begin at Tue 2020-05-05 18:11:49 EDT, end at Sun 2020-05-10 11:04:59 EDT.
May 10 10:54:35 testvm1.both.org systemd[1]: Reloading.
May 10 10:54:35 testvm1.both.org audit: BPF prog-id=27 op=UNLOAD
May 10 10:54:35 testvm1.both.org audit: BPF prog-id=26 op=UNLOAD
[...]
ay 10 10:54:35 testvm1.both.org audit: BPF prog-id=55 op=LOAD
May 10 10:54:45 testvm1.both.org systemd[1]: Starting My hello shell script...
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ###############################
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ######### Hello World! ########
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ###############################
May 10 10:54:45 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:54:45 testvm1.both.org systemd[1]: Finished My hello shell script.
May 10 10:54:45 testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd>

Creative Commons Attribution Share-alike 4.0 52

May 10 10:54:45 testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd/>
lines 1-46/46 (END)

If there were a lot of activity in this time period, you could further narrow the resulting data
stream using a combination of these options:

journalctl --since="2020-05-10 10:54:35" --until="2020-05-10 10:55:00" -t
"hello.sh"
-- Logs begin at Tue 2020-05-05 18:11:49 EDT, end at Sun 2020-05-10 11:10:41 EDT
May 10 10:54:45 testvm1.both.org hello.sh[1380]: ######### Hello World! ########

Your results should be similar to mine. You can see from this series of experiments that the
service executed properly.

Reboot—finally
So far, you have not rebooted the host where you installed your service. So do that now
because, after all, this how-to is about running a program at startup. First, you need to enable
the service to launch during the startup sequence:

systemctl enable hello.service
Created symlink /etc/systemd/system/multi-user.target.wants/hello.service →
/etc/systemd/system/hello.service.

Notice that the link was created in the /etc/systemd/system/multi-
user.target.wants directory. This is because the service unit file specifies that the
service is "wanted" by the multi-user.target.

Reboot, and be sure to watch the data stream during the startup sequence to see the "Hello
world" message. Wait … you did not see it? Well, neither did I. Although it went by very fast, I
did see systemd's message that it was starting the hello.service.

Look at the journal since the latest system boot. You can use the less pager's search tool to
find "Hello" or "hello." I pruned many lines of data, but I left some of the surrounding journal
entries, so you can get a feel for what the entries pertaining to your service look like locally:

journalctl -b
[...]
May 10 10:37:49 testvm1.both.org systemd[1]: Listening on SSSD Kerberos Cache
Manager responder socket.
May 10 10:37:49 testvm1.both.org systemd[1]: Reached target Sockets.
May 10 10:37:49 testvm1.both.org systemd[1]: Reached target Basic System.

Creative Commons Attribution Share-alike 4.0 53

May 10 10:37:49 testvm1.both.org systemd[1]: Starting Modem Manager...
May 10 10:37:49 testvm1.both.org systemd[1]: Starting Network Manager...
May 10 10:37:49 testvm1.both.org systemd[1]: Starting Avahi mDNS/DNS-SD Stack...
May 10 10:37:49 testvm1.both.org systemd[1]: Condition check resulted in Secure
Boot DBX (blacklist) updater being skipped.
May 10 10:37:49 testvm1.both.org systemd[1]: Starting My hello shell script...
May 10 10:37:49 testvm1.both.org systemd[1]: Starting IPv4 firewall with
iptables...
May 10 10:37:49 testvm1.both.org systemd[1]: Started irqbalance daemon.
May 10 10:37:49 testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=irqbalance comm="systemd"
exe="/usr/lib/sy>"'
May 10 10:37:49 testvm1.both.org systemd[1]: Starting LSB: Init script for live
image....
May 10 10:37:49 testvm1.both.org systemd[1]: Starting Hardware Monitoring
Sensors...
[...]
May 10 10:37:49 testvm1.both.org systemd[1]: Starting NTP client/server...
May 10 10:37:49 testvm1.both.org systemd[1]: Starting SYSV: Late init script for
live image....
May 10 10:37:49 testvm1.both.org systemd[1]: Started SYSV: Late init script for
live image..
May 10 10:37:49 testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=livesys-late comm="systemd"
exe="/usr/lib/>"'
May 10 10:37:49 testvm1.both.org hello.sh[842]: ######### Hello World! ########
May 10 10:37:49 testvm1.both.org systemd[1]: hello.service: Succeeded.
May 10 10:37:49 testvm1.both.org systemd[1]: Finished My hello shell script.
May 10 10:37:49 testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd>"'
May 10 10:37:49 testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd/>
May 10 10:37:50 testvm1.both.org audit: BPF prog-id=28 op=LOAD
[...]

You can see that systemd started the hello.service unit, which ran the hello.sh shell
script with the output recorded in the journal. If you were able to catch it during boot, you
would also have seen the systemd message indicating that it was starting the script and
another message indicating that the service succeeded. By looking at the first systemd
message in the data stream above, you can see that systemd started your service very soon
after reaching the basic system target.

But I would like to see the message displayed at startup as well. There is a way to make that
happen: Add the following line to the [Service] section of the hello.service file:

Creative Commons Attribution Share-alike 4.0 54

StandardOutput=journal+console

The hello.service file now looks like this:

Simple service unit file to use for testing
startup configurations with systemd.
By David Both
Licensed under GPL V2
#

[Unit]
Description=My hello shell script

[Service]
Type=oneshot
ExecStart=/usr/local/bin/hello.sh
StandardOutput=journal+console

[Install]
WantedBy=multi-user.target

After adding this line, reboot the system, and watch the data stream as it scrolls up the display
during the boot process. You should see the message in its little box. After the startup
sequence completes, you can view the journal for the most recent boot and locate the entries
for your new service.

Changing the sequence
Now that your service is working, you can look at where it starts in the startup sequence and
experiment with changing it. It is important to remember that systemd's intent is to start as
many services and other unit types in parallel within each of the major targets:
basic.target, multi-user.target, and graphical.target. You should have just
seen the journal entries for the most recent boot, which should look similar to my journal in
the output above.

Notice that systemd started your test service soon after it reached the target basic system.
This is what you specified in the service unit file in the WantedBy line, so it is correct. Before
you change anything, list the contents of the /etc/systemd/system/multi-
user.target.wants directory, and you will see a symbolic (soft) link to the service unit file.
The [Install] section of the service unit file specifies which target will start the service,

Creative Commons Attribution Share-alike 4.0 55

and running the systemctl enable hello.service command creates the link in the
appropriate "target wants" directory:

hello.service -> /etc/systemd/system/hello.service

Certain services need to start during the basic.target, and others do not need to start
unless the system is starting the graphical.target. The service in this experiment will not
start in the basic.target—assume you do not need it to start until the
graphical.target. So change the WantedBy line:

WantedBy=graphical.target

Be sure to disable the hello.service and re-enable it to delete the old link and add the
new one in the graphical.targets.wants directory. I have noticed that if I forget to
disable the service before changing the target that wants it, I can run the systemctl
disable command, and the links will be removed from both "target wants" directories. Then,
I just need to re-enable the service and reboot.

One concern with starting services in the graphical.target is that if the host boots to
multi-user.target, this service will not start automatically. That may be what you want if
the service requires a GUI desktop interface, but it also may not be what you want.

Look at the journal entries for the graphical.target and the multi-user.target using
the -o short-monotonic option that displays seconds after kernel startup with
microsecond precision:

journalctl -b -o short-monotonic

Some results for multi-user.target:

[17.264730] testvm1.both.org systemd[1]: Starting My hello shell script...
[17.265561] testvm1.both.org systemd[1]: Starting IPv4 firewall...
[...]
[19.478468] testvm1.both.org systemd[1]: Starting LSB: Init script for live
image....
[19.507359] ...both.org iptables.init[844]: Applying firewall rules: [OK]
[19.507835] testvm1.both.org hello.sh[843]: ######### Hello World! ########
[...]
[21.482481] testvm1.both.org systemd[1]: hello.service: Succeeded.
[21.482550] testvm1.both.org smartd[856]: Opened configuration file
/etc/smartmontools/smartd.conf
[21.482605] testvm1.both.org systemd[1]: Finished My hello shell script.

Creative Commons Attribution Share-alike 4.0 56

And some results for graphical.target:

[19.436815] testvm1.both.org systemd[1]: Starting My hello shell script...
[19.437070] testvm1.both.org systemd[1]: Starting IPv4 firewall...
[...]
[19.612614] testvm1.both.org hello.sh[841]: ###############################
[19.612614] testvm1.both.org hello.sh[841]: ######### Hello World! ########
[19.612614] testvm1.both.org hello.sh[841]: ###############################
[19.629455] testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'
[19.629569] testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'
[19.629682] testvm1.both.org systemd[1]: hello.service: Succeeded.
[19.629782] testvm1.both.org systemd[1]: Finished My hello shell script.

Despite having the graphical.target "want" in the unit file, the hello.service unit
runs about 19.5 or 19.6 seconds into startup. But hello.service starts at about 17.24
seconds in the multi-user.target and 19.43 seconds in the graphical target.

What does this mean? Look at the /etc/systemd/system/default.target link. The
contents of that file show that systemd first starts the default target, graphical.target,
which then pulls in the multi-user.target:

cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target display-manager.service
AllowIsolate=yes

Whether it starts the service with the graphical.target or the multi-user.target, the
hello.service unit runs at about 19.5 or 19.6 seconds into startup. Based on this and the

Creative Commons Attribution Share-alike 4.0 57

journal results (especially the ones using the monotonic output), you know that both of these
targets are starting in parallel. Look at one more thing from the journal output:

[28.397330] testvm1.both.org systemd[1]: Reached target Multi-User System.
[28.397431] testvm1.both.org systemd[1]: Reached target Graphical Interface.

Both targets finish at almost the same time. This is consistent because graphical.target
pulls in the multi-user.target and cannot finish until the multi.user target is
reached (finished). But hello.service finishes much earlier than this.

What all this means is that these two targets start up pretty much in parallel. If you explore the
journal entries, you will see various targets and services from each of those primary targets
starting mostly in parallel. It is clear that the multi-user.target does not need to
complete before the graphical.target starts. Therefore, simply using these primary
targets to sequence the startup does not work very well, although it can be useful for
ensuring that units are started only when they are needed for the graphical.target.

Before continuing, revert the hello.service unit file to WantedBy=multi-user.target
(if it's not already.)

Ensure a service starts after the network is running
A common startup sequence issue is ensuring that a unit starts after the network is up and
running. The Freedesktop.org article Running services after the network is up says there is no
real consensus on when a network is considered "up." However, the article provides three
options, and the one that meets the needs of a fully operational network is network-
online.target. Just be aware that network.target is used during shutdown rather than
startup, so it will not do you any good when you are trying to sequence the startup.

Before making any other changes, be sure to examine the journal and verify that the
hello.service unit starts well before the network. You can look for the network-
online.target in the journal to check.

Your service does not really require the network service, but you can use it as an avatar for
one that does.

Because setting WantedBy=graphical.target does not ensure that the service will be
started after the network is up and running, you need another way to ensure that it is.
Fortunately, there is an easy way to do this. Add the following two lines to the [Unit] section
of the hello.service unit file:

Creative Commons Attribution Share-alike 4.0 58

https://www.freedesktop.org/wiki/Software/systemd/NetworkTarget/

After=network-online.target
Wants=network-online.target

Both of these entries are required to make this work. Reboot the host and look for the location
of entries for your service in the journals:

[26.083121] testvm1.both.org NetworkManager[842]: <info> [1589227764.0293]
device (enp0s3): Activation: successful, device activated.
[26.083349] testvm1.both.org NetworkManager[842]: <info> [1589227764.0301]
manager: NetworkManager state is now CONNECTED_GLOBAL
[26.085818] testvm1.both.org NetworkManager[842]: <info> [1589227764.0331]
manager: startup complete
[26.089911] testvm1.both.org systemd[1]: Finished Network Manager Wait Online.
[26.090254] testvm1.both.org systemd[1]: Reached target Network is Online.
[26.090399] testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=NetworkManager-wait-online
comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=? termina>"'
[26.091991] testvm1.both.org systemd[1]: Starting My hello shell script...
[26.095864] testvm1.both.org sssd[be[implicit_files]][1007]: Starting up
[26.290539] testvm1.both.org systemd[1]: Condition check resulted in Login and
scanning of iSCSI devices being skipped.
[26.291075] testvm1.both.org systemd[1]: Reached target Remote File Systems
(Pre).
[26.291154] testvm1.both.org systemd[1]: Reached target Remote File Systems.
[26.292671] testvm1.both.org systemd[1]: Starting Notify NFS peers of a
restart...
[26.294897] testvm1.both.org systemd[1]: iscsi.service: Unit cannot be
reloaded because it is inactive.
[26.304682] testvm1.both.org hello.sh[1010]: ######### Hello World! ########
[26.306569] testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'
[26.306669] testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=hello comm="systemd"
exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'
[26.306772] testvm1.both.org systemd[1]: hello.service: Succeeded.
[26.306862] testvm1.both.org systemd[1]: Finished My hello shell script.
[26.584966] testvm1.both.org sm-notify[1011]: Version 2.4.3 starting

This confirms that the hello.service unit started after the network-online.target.
This is exactly what you want. You may also have seen the "Hello World" message as it passed
by during startup. Notice also that the timestamp is about six seconds later in the startup than
it was before.

Creative Commons Attribution Share-alike 4.0 59

The best way to define the start sequence
This article explored Linux startup with systemd and unit files and journals in greater detail
and discovered what happens when errors are introduced into the service file. As a sysadmin, I
find that this type of experimentation helps me understand the behaviors of a program or
service when it breaks, and breaking things intentionally is a good way to learn in a safe
environment.

As the experiments in this article proved, just adding a service unit to either the multi-
user.target or the graphical.target does not define its place in the start sequence. It
merely determines whether a unit starts as part of a graphical environment or not. The reality
is that the startup targets multi-user.target and graphical.target—and all of their
Wants and Requires—start up pretty much in parallel. The best way to ensure that a unit starts
in a specific order is to determine the unit it is dependent on and configure the new unit to
"Want" and "After" the unit upon which it is dependent.

Creative Commons Attribution Share-alike 4.0 60

Control your computer time and
date with systemd

Most people are concerned with time. We get up in time to perform our morning rituals and
commute to work (a short trip for many of us these days), take a break for lunch, meet a
project deadline, celebrate birthdays and holidays, catch a plane, and so much more.

Some of us are even obsessed with time. My watch is solar-powered and obtains the exact
time from the National Institute of Standards and Technology (NIST) in Fort Collins, Colorado,
via the WWVB time signal radio station located there. The time signals are synced to the
atomic clock, also located in Fort Collins. My Fitbit syncs up to my phone, which is synced to a
Network Time Protocol (NTP) server, which is ultimately synced to the atomic clock.

Why time is important to computers
There are many reasons our devices and computers need the exact time. For example, in
banking, stock markets, and other financial businesses, transactions must be maintained in
the proper order, and exact time sequences are critical for that.

Our phones, tablets, cars, GPS systems, and computers all require precise time and date
settings. I want the clock on my computer desktop to be correct, so I can count on my local
calendar application to pop up reminders at the correct time. The correct time also ensures
SystemV cron jobs and systemd timers trigger at the correct time.

The correct time is also important for logging, so it is a bit easier to locate specific log entries
based on the time. For one example, I once worked in DevOps (it was not called that at the
time) for the State of North Carolina email system. We used to process more than 20 million
emails per day. Following the trail of email through a series of servers or determining the exact
sequence of events by using log files on geographically dispersed hosts can be much easier
when the computers in question keep exact times.

Creative Commons Attribution Share-alike 4.0 61

https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/WWVB
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology

Multiple times
Linux hosts have two times to consider: system time and RTC time. RTC stands for real-time
clock, which is a fancy and not particularly accurate name for the system hardware clock.

The hardware clock runs continuously, even when the computer is turned off, by using a
battery on the system motherboard. The RTC's primary function is to keep the time when a
connection to a time server is not available. In the dark ages of personal computers, there was
no internet to connect to a time server, so the only time a computer had available was the
internal clock. Operating systems had to rely on the RTC at boot time, and the user had to
manually set the system time using the hardware BIOS configuration interface to ensure it
was correct.

The hardware clock does not understand the concept of time zones; only the time is stored in
the RTC, not the time zone nor an offset from UTC (Universal Coordinated Time, which is also
known as GMT, or Greenwich Mean Time).

The system time is the time known by the operating system. It is the time you see on the GUI
clock on your desktop, in the output from the date command, in timestamps for logs, and in
file access, modify, and change times.

The rtc man page contains a more complete discussion of the RTC and system clocks and
RTC's functionality.

What about NTP?
Computers worldwide use the NTP (Network Time Protocol) to synchronize their time with
internet standard reference clocks through a hierarchy of NTP servers. The primary time
servers are at stratum 1, and they are connected directly to various national time services at
stratum 0 via satellite, radio, or even modems over phone lines. The time services at stratum 0
may be an atomic clock, a radio receiver that is tuned to the signals broadcast by an atomic
clock, or a GPS receiver using the highly accurate clock signals broadcast by GPS satellites.

To prevent time requests from time servers or clients lower in the hierarchy (i.e., with a higher
stratum number) from overwhelming the primary reference servers, several thousand public
NTP stratum 2 servers are open and available for all to use. Many organizations and users
(including me) with large numbers of hosts that need an NTP server choose to set up their
own time servers, so only one local host accesses the stratum 2 or 3 time servers. Then they

Creative Commons Attribution Share-alike 4.0 62

https://linux.die.net/man/4/rtc
https://linux.die.net/man/4/rtc

configure the remaining hosts in the network to use the local time server. In the case of my
home network, that is a stratum 3 server.

NTP implementation options
The original NTP implementation is ntpd, and it has been joined by two newer ones, chronyd
and systemd-timesyncd. All three keep the local host's time synchronized with an NTP time
server. The systemd-timesyncd service is not as robust as chronyd, but it is sufficient for most
purposes. It can perform large time jumps if the RTC is far out of sync, and it can adjust the
system time gradually to stay in sync with the NTP server if the local system time drifts a bit.
The systemd-timesync service cannot be used as a time server.

Chrony is an NTP implementation containing two programs: the chronyd daemon and a
command-line interface called chronyc. As I explained in a previous article, Chrony has some
features that make it the best choice for many environments, chiefly:

• Chrony can synchronize to the time server much faster than the old ntpd service. This
is good for laptops or desktops that do not run constantly.

• It can compensate for fluctuating clock frequencies, such as when a host hibernates or
enters sleep mode, or when the clock speed varies due to frequency stepping that
slows clock speeds when loads are low.

• It handles intermittent network connections and bandwidth saturation.
• It adjusts for network delays and latency.
• After the initial time sync, Chrony never stops the clock. This ensures stable and

consistent time intervals for many system services and applications.
• Chrony can work even without a network connection. In this case, the local host or

server can be updated manually.
• Chrony can act as an NTP server.

Just to be clear, NTP is a protocol that is implemented on a Linux host using either Chrony or
the systemd-timesyncd.service.

The NTP, Chrony, and systemd-timesyncd RPM packages are available in standard Fedora
repositories. The systemd-udev RPM is a rule-based device node and kernel event manager
that is installed by default with Fedora but not enabled.

You can install all three and switch between them, but that is a pain and not worth the trouble.
Modern releases of Fedora, CentOS, and RHEL have moved from NTP to Chrony as their
default timekeeping implementation, and they also install systemd-timesyncd. I find that

Creative Commons Attribution Share-alike 4.0 63

https://opensource.com/article/18/12/manage-ntp-chrony
https://chrony.tuxfamily.org/

Chrony works well, provides a better interface than the NTP service, presents much more
information, and increases control, which are all advantages for the sysadmin.

Disable other NTP services
It's possible an NTP service is already running on your host. If so, you need to disable it before
switching to something else. I have been using chronyd, so I used the following commands to
stop and disable it. Run the appropriate commands for whatever NTP daemon you are using
on your host:

systemctl disable chronyd ; systemctl stop chronyd
Removed /etc/systemd/system/multi-user.target.wants/chronyd.service.

Verify that it is both stopped and disabled:

systemctl status chronyd
● chronyd.service - NTP client/server
 Loaded: loaded (/usr/lib/systemd/system/chronyd.service; disabled; vendor
preset: enabled)
 Active: inactive (dead)
 Docs: man:chronyd(8)
 man:chrony.conf(5)

Check the status before starting
The systemd timesync's status indicates whether systemd has initiated an NTP service.
Because you have not yet started systemd NTP, the timesync-status command returns no
data:

timedatectl timesync-status
Failed to query server: Could not activate remote peer.

But a straight status request provides some important information. For example, the
timedatectl command without an argument or options implies the status subcommand
as default:

timedatectl status
 Local time: Fri 2020-05-15 08:43:10 EDT
 Universal time: Fri 2020-05-15 12:43:10 UTC
 RTC time: Fri 2020-05-15 08:43:08
 Time zone: America/New_York (EDT, -0400)
System clock synchronized: no
 NTP service: inactive
 RTC in local TZ: yes

Creative Commons Attribution Share-alike 4.0 64

Warning: The system is configured to read the RTC time in the local time zone.
 This mode cannot be fully supported. It will create various problems
 with time zone changes and daylight saving time adjustments. The RTC
 time is never updated, it relies on external facilities to maintain it.
 If at all possible, use RTC in UTC by calling
 'timedatectl set-local-rtc 0'.

This returns the local time for your host, the UTC time, and the RTC time. It shows that the
system time is set to the America/New_York time zone (TZ), the RTC is set to the time in
the local time zone, and the NTP service is not active. The RTC time has started to drift a bit
from the system time. This is normal with systems whose clocks have not been synchronized.
The amount of drift on a host depends upon the amount of time since the system was last
synced and the speed of the drift per unit of time.

There is also a warning message about using local time for the RTC—this relates to time-zone
changes and daylight saving time adjustments. If the computer is off when changes need to
be made, the RTC time will not change. This isn't an issue in servers or other hosts that are
powered on 24/7. Also, any service that provides NTP time synchronization ensures time is set
early in the startup process, so it's correct before it is fully up and running.

Set the time zone
Usually, you set a computer's time zone during the installation procedure and never need to
change it. However, there are times it is necessary to change the time zone, and there are a
couple of tools to help. Linux uses time-zone files to define the local time zone in use by the
host. These binary files are located in the /usr/share/zoneinfo directory. The default for
my time zone is defined by the link /etc/localtime ->
../usr/share/zoneinfo/America/New_York. But you don't need to know that to
change the time zone.

But you do need to know the official time-zone name for your location. Say you want to
change the time zone to Los Angeles:

timedatectl list-timezones | column
[...]
America/La_Paz Europe/Budapest
America/Lima Europe/Chisinau
America/Los_Angeles Europe/Copenhagen
America/Maceio Europe/Dublin
America/Managua Europe/Gibraltar
[...]

Creative Commons Attribution Share-alike 4.0 65

Now you can set the time zone. I used the date command to verify the change, but you could
also use timedatectl:

date
Tue 19 May 2020 04:47:49 PM EDT
timedatectl set-timezone America/Los_Angeles
date
Tue 19 May 2020 01:48:23 PM PDT

You can now change your host's time zone back to your local one.

systemd-timesyncd
The systemd timesync daemon provides an NTP implementation that is easy to manage
within a systemd context. It is installed by default in Fedora and Ubuntu and started by default
in Ubuntu but not in Fedora. I am unsure about other distros; you can check yours with:

systemctl status systemd-timesyncd

Configure systemd-timesyncd
The configuration file for systemd-timesyncd is /etc/systemd/timesyncd.conf. It is a
simple file with fewer options included than the older NTP service and chronyd. Here are the
complete contents of the default version of this file on my Fedora VM:

This file is part of systemd.
#
Entries in this file show the compile time defaults.
You can change settings by editing this file.
Defaults can be restored by simply deleting this file.
#
See timesyncd.conf(5) for details.

[Time]
#NTP=
#FallbackNTP=0.fedora.pool.ntp.org 1.fedora.pool.ntp.org 2.fedora.pool.ntp.org
3.fedora.pool.ntp.org
#RootDistanceMaxSec=5
#PollIntervalMinSec=32
#PollIntervalMaxSec=2048

The only section it contains besides comments is [Time], and all the lines are commented
out. These are the default values and do not need to be changed or uncommented (unless

Creative Commons Attribution Share-alike 4.0 66

you have some reason to do so). If you do not have a specific NTP time server defined in the
NTP= line, Fedora's default is to fall back on the Fedora pool of time servers. I like to add the
time server on my network to this line:

NTP=myntpserver

Start timesync
Starting and enabling systemd-timesyncd is just like any other service:

systemctl enable systemd-timesyncd.service
Created symlink /etc/systemd/system/dbus-org.freedesktop.timesync1.service →
/usr/lib/systemd/system/systemd-timesyncd.service.
Created symlink /etc/systemd/system/sysinit.target.wants/systemd-
timesyncd.service → /usr/lib/systemd/system/systemd-timesyncd.service.
systemctl start systemd-timesyncd.service

Set the hardware clock
Here's what one of my systems looked like after starting timesyncd:

timedatectl
 Local time: Sat 2020-05-16 14:34:54 EDT
 Universal time: Sat 2020-05-16 18:34:54 UTC
 RTC time: Sat 2020-05-16 14:34:53
 Time zone: America/New_York (EDT, -0400)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: no

The RTC time is around a second off from local time (EDT), and the discrepancy grows by a
couple more seconds over the next few days. Because RTC does not have the concept of time
zones, the timedatectl command must do a comparison to determine which time zone is a
match. If the RTC time does not match local time exactly, it is not considered to be in the local
time zone.

In search of a bit more information, I checked the status of systemd-timesync.service and
found:

systemctl status systemd-timesyncd.service
● systemd-timesyncd.service - Network Time Synchronization
 Loaded: loaded (/usr/lib/systemd/system/systemd-timesyncd.service; enabled;
vendor preset: disabled)

Creative Commons Attribution Share-alike 4.0 67

 Active: active (running) since Sat 2020-05-16 13:56:53 EDT; 18h ago
 Docs: man:systemd-timesyncd.service(8)
 Main PID: 822 (systemd-timesyn)
 Status: "Initial synchronization to time server 163.237.218.19:123
(2.fedora.pool.ntp.org)."
 Tasks: 2 (limit: 10365)
 Memory: 2.8M
 CPU: 476ms
 CGroup: /system.slice/systemd-timesyncd.service
 └─822 /usr/lib/systemd/systemd-timesyncd

May 16 09:57:24 testvm2.both.org systemd[1]: Starting Network Time
Synchronization...
May 16 09:57:24 testvm2.both.org systemd-timesyncd[822]: System clock time unset
or jumped backwards, restoring from recorded timestamp: Sat 2020-05-16 13:56:53
May 16 13:56:53 ...m2.both.org systemd[1]: Started Network Time Synchronization.
May 16 13:57:56 testvm2.both.org systemd-timesyncd[822]: Initial synchronization
to time server 163.237.218.19:123 (2.fedora.pool.ntp.org).

Notice the log message that says the system clock time was unset or jumped backward. The
timesync service sets the system time from a timestamp. Timestamps are maintained by the
timesync daemon and are created at each successful time synchronization.

The timedatectl command does not have the ability to set the value of the hardware clock
from the system clock; it can only set the time and date from a value entered on the
command line. However, you can set the RTC to the same value as the system time by using
the hwclock command:

/sbin/hwclock --systohc --localtime
timedatectl
 Local time: Mon 2020-05-18 13:56:46 EDT
 Universal time: Mon 2020-05-18 17:56:46 UTC
 RTC time: Mon 2020-05-18 13:56:46
 Time zone: America/New_York (EDT, -0400)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: yes

The --localtime option ensures that the hardware clock is set to local time, not UTC.

Do you really need RTC?
Any NTP implementation will set the system clock during the startup sequence, so is RTC
necessary? Not really, so long as you have a network connection to a time server. However,
many systems do not have full-time access to a network connection, so the hardware clock is

Creative Commons Attribution Share-alike 4.0 68

useful so that Linux can read it and set the system time. This is a better solution than having
to set the time by hand, even if it might drift away from the actual time.

Summary
This article explored the use of some systemd tools for managing date, time, and time zones.
The systemd-timesyncd tool provides a decent NTP client that can keep time on a local host
synchronized with an NTP server. However, systemd-timesyncd does not provide a server
service, so if you need an NTP server on your network, you must use something else, such as
Chrony, to act as a server.

I prefer to have a single implementation for any service in my network, so I use Chrony. If you
do not need a local NTP server, or if you do not mind dealing with Chrony for the server and
systemd-timesyncd for the client and you do not need Chrony's additional capabilities, then
systemd-timesyncd is a serviceable choice for an NTP client.

There is another point I want to make: You do not have to use systemd tools for NTP
implementation. You can use the old ntpd or Chrony or some other NTP implementation.
systemd is composed of a large number of services; many of them are optional, so they can
be disabled and something else used in its place. It is not the huge, monolithic monster that
some make it out to be. It is OK to not like systemd or parts of it, but you should make an
informed decision.

I don't dislike systemd's implementation of NTP, but I much prefer Chrony because it meets
my needs better. And that is what Linux is all about.

Creative Commons Attribution Share-alike 4.0 69

Use systemd timers instead of
cronjobs

I am in the process of converting my cron jobs to systemd timers. I have used timers for a few
years, but usually, I learned just enough to perform the task I was working on. While doing
research for this systemd series, I learned that systemd timers have some very interesting
capabilities.

Like cron jobs, systemd timers can trigger events—shell scripts and programs—at specified
time intervals, such as once a day, on a specific day of the month (perhaps only if it is a
Monday), or every 15 minutes during business hours from 8am to 6pm. Timers can also do
some things that cron jobs cannot. For example, a timer can trigger a script or program to run
a specific amount of time after an event such as boot, startup, completion of a previous task,
or even the previous completion of the service unit called by the timer.

System maintenance timers
When Fedora or any systemd-based distribution is installed on a new system, it creates
several timers that are part of the system maintenance procedures that happen in the
background of any Linux host. These timers trigger events necessary for common
maintenance tasks, such as updating system databases, cleaning temporary directories,
rotating log files, and more.

As an example, I'll look at some of the timers on my primary workstation by using the
systemctl status *timer command to list all the timers on my host. The asterisk symbol
works the same as it does for file globbing, so this command lists all systemd timer units:

systemctl status *timer
● mlocate-updatedb.timer - Updates mlocate database every day
 Loaded: loaded (/usr/lib/systemd/system/mlocate-updatedb.timer; enabled;
vendor preset: enabled)

Creative Commons Attribution Share-alike 4.0 70

https://opensource.com/users/dboth
https://opensource.com/article/17/11/how-use-cron-linux

 Active: active (waiting) since Tue 2020-06-02 08:02:33 EDT; 2 days ago
 Trigger: Fri 2020-06-05 00:00:00 EDT; 15h left
 Triggers: ● mlocate-updatedb.service

Jun 02 08:02:33 testvm1.both.org systemd[1]: Started Updates mlocate database
every day.

● logrotate.timer - Daily rotation of log files
 Loaded: loaded (/usr/lib/systemd/system/logrotate.timer; enabled; vendor
preset: enabled)
 Active: active (waiting) since Tue 2020-06-02 08:02:33 EDT; 2 days ago
 Trigger: Fri 2020-06-05 00:00:00 EDT; 15h left
 Triggers: ● logrotate.service
 Docs: man:logrotate(8)
 man:logrotate.conf(5)

Jun 02 08:02:33 testvm1.both.org systemd[1]: Started Daily rotation of log files.
[...]
Jun 02 08:02:33 testvm1.both.org systemd[1]: Started Run system activity
accounting tool every 10 minutes.

Each timer has at least six lines of information associated with it:

• The first line has the timer's file name and a short description of its purpose.
• The second line displays the timer's status, whether it is loaded, the full path to the

timer unit file, and the vendor preset.
• The third line indicates its active status, which includes the date and time the timer

became active.
• The fourth line contains the date and time the timer will be triggered next and an

approximate time until the trigger occurs.
• The fifth line shows the name of the event or the service that is triggered by the timer.
• Some (but not all) systemd unit files have pointers to the relevant documentation.

Three of the timers in my virtual machine's output have pointers to documentation.
This is a nice (but optional) bit of data.

• The final line is the journal entry for the most recent instance of the service triggered
by the timer.

Depending upon your host, you probably have a different set of timers.

Create a timer
Although we can deconstruct one or more of the existing timers to learn how they work, let’s
create our own service unit and a timer unit to trigger it. We will use a fairly trivial example in

Creative Commons Attribution Share-alike 4.0 71

https://opensource.com/article/20/5/manage-startup-systemd

order to keep this simple. After we have finished this, it will be easier to understand how the
other timers work and to determine what they are doing.

First, create a simple service that will run something basic, such as the free command. For
example, you may want to monitor free memory at regular intervals. Create the following
myMonitor.service unit file in the /etc/systemd/system directory. It does not need to
be executable:

This service unit is for testing timer units
By David Both
Licensed under GPL V2
#

[Unit]
Description=Logs system statistics to the systemd journal
Wants=myMonitor.timer

[Service]
Type=oneshot
ExecStart=/usr/bin/free

[Install]
WantedBy=multi-user.target

Now let’s look at the status and test our service unit to ensure that it works as we expect it to.

systemctl status myMonitor.service
● myMonitor.service - Logs system statistics to the systemd journal
 Loaded: loaded (/etc/systemd/system/myMonitor.service; disabled; vendor
preset: disabled)
 Active: inactive (dead)
systemctl start myMonitor.service

Where is the output? By default, the standard output (STDOUT) from programs run by
systemd service units is sent to the systemd journal, which leaves a record you can view now
or later—up to a point. (I will look at systemd journaling and retention strategies in a future
article in this series.) Look at the journal specifically for your service unit and for today only.
The -S option, which is the short version of --since, allows you to specify the time period
that the journalctl tool should search for entries. This isn't because you don't care about
previous results—in this case, there won't be any—it is to shorten the search time if your host
has been running for a long time and has accumulated a large number of entries in the journal:

journalctl -S today -u myMonitor.service

Creative Commons Attribution Share-alike 4.0 72

-- Logs begin at Mon 2020-06-08 07:47:20 EDT, end at Thu 2020-06-11 09:40:47 EDT.
--
Jun 11 09:12:09 testvm1.both.org systemd[1]: Starting Logs system statistics to the systemd journal...
Jun 11 09:12:09 testvm1.both.org free[377966]: total used free shared buff/cache available
Jun 11 09:12:09 testvm1.both.org free[377966]: Mem: 12635740 522868 11032860 8016
1080012 11821508
Jun 11 09:12:09 testvm1.both.org free[377966]: Swap: 8388604 0 8388604
Jun 11 09:12:09 testvm1.both.org systemd[1]: myMonitor.service: Succeeded.

A task triggered by a service can be a single program, a series of programs, or a script written
in any scripting language. Add another task to the service by adding the following line to the
end of the [Service] section of the myMonitor.service unit file:

ExecStart=/usr/bin/lsblk

Start the service again and check the journal for the results, which should look like this. You
should see the results from both commands in the journal:

Jun 11 15:42:18 testvm1.both.org systemd[1]: Starting Logs system statistics to the systemd journal...
Jun 11 15:42:18 testvm1.both.org free[379961]: total used free shared
buff/cache available
Jun 11 15:42:18 testvm1.both.org free[379961]: Mem: 12635740 531788 11019540 8024...
Jun 11 15:42:18 testvm1.both.org free[379961]: Swap: 8388604 0 8388604
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: sda 8:0 0 120G 0 disk
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: ├─sda1 8:1 0 4G 0 part /boot
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: └─sda2 8:2 0 116G 0 part
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: ├─VG01-root 253:0 0 5G 0 lvm /
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: ├─VG01-swap 253:1 0 8G 0 lvm [SWAP]
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: ├─VG01-usr 253:2 0 30G 0 lvm /usr
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: ├─VG01-tmp 253:3 0 10G 0 lvm /tmp
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: ├─VG01-var 253:4 0 20G 0 lvm /var
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: └─VG01-home 253:5 0 10G 0 lvm /home
Jun 11 15:42:18 testvm1.both.org lsblk[379962]: sr0 11:0 1 1024M 0 rom
Jun 11 15:42:18 testvm1.both.org systemd[1]: myMonitor.service: Succeeded.
Jun 11 15:42:18 testvm1.both.org systemd[1]: Finished Logs system statistics to the systemd journal.

Now that you know your service works as expected, create the timer unit file,
myMonitor.timer in /etc/systemd/system, and add the following:

This timer unit is for testing
By David Both
Licensed under GPL V2

[Unit]
Description=Logs some system statistics to the systemd journal
Requires=myMonitor.service

[Timer]
Unit=myMonitor.service
OnCalendar=*-*-* *:*:00

Creative Commons Attribution Share-alike 4.0 73

[Install]
WantedBy=timers.target

The OnCalendar time specification in the myMonitor.timer file, *-*-* *:*:00,
should trigger the timer to execute the myMonitor.service unit every minute. I will explore
OnCalendar settings a bit later in this article.

For now, observe any journal entries pertaining to running your service when it is triggered by
the timer. You could also follow the timer, but following the service allows you to see the
results in near real time. Run journalctl with the -f (follow) option:

journalctl -S today -f -u myMonitor.service
-- Logs begin at Mon 2020-06-08 07:47:20 EDT. --

Start but do not enable the timer, and see what happens after it runs for a while:

systemctl start myMonitor.service

One result shows up right away, and the next ones come at—sort of—one-minute intervals.
Watch the journal for a few minutes and see if you notice the same things I did:

journalctl -S today -f -u myMonitor.service
-- Logs begin at Mon 2020-06-08 07:47:20 EDT. --
Jun 13 08:39:18 testvm1.both.org systemd[1]: Starting Logs system statistics to the systemd journal...
Jun 13 08:39:18 testvm1.both.org systemd[1]: myMonitor.service: Succeeded.
Jun 13 08:39:19 testvm1.both.org free[630566]: total used free shared...
Jun 13 08:39:19 testvm1.both.org free[630566]: Mem: 12635740 556604 10965516 8036...
Jun 13 08:39:19 testvm1.both.org free[630566]: Swap: 8388604 0 8388604
Jun 13 08:39:18 testvm1.both.org systemd[1]: Finished Logs system statistics to the systemd journal.
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: sda 8:0 0 120G 0 disk
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: ├─sda1 8:1 0 4G 0 part /boot
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: └─sda2 8:2 0 116G 0 part
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: ├─VG01-root 253:0 0 5G 0 lvm /
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: ├─VG01-swap 253:1 0 8G 0 lvm [SWAP]
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: ├─VG01-usr 253:2 0 30G 0 lvm /usr
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: ├─VG01-tmp 253:3 0 10G 0 lvm /tmp
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: ├─VG01-var 253:4 0 20G 0 lvm /var
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: └─VG01-home 253:5 0 10G 0 lvm /home
Jun 13 08:39:19 testvm1.both.org lsblk[630567]: sr0 11:0 1 1024M 0 rom
Jun 13 08:40:46 testvm1.both.org systemd[1]: Starting Logs system statistics to the systemd journal...
Jun 13 08:40:46 testvm1.both.org free[630572]: total used free shared...
Jun 13 08:40:46 testvm1.both.org free[630572]: Mem: 12635740 555228 10966836 8036...
Jun 13 08:40:46 testvm1.both.org free[630572]: Swap: 8388604 0 8388604
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: sda 8:0 0 120G 0 disk
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: ├─sda1 8:1 0 4G 0 part /boot
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: └─sda2 8:2 0 116G 0 part
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: ├─VG01-root 253:0 0 5G 0 lvm /
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: ├─VG01-swap 253:1 0 8G 0 lvm [SWAP]
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: ├─VG01-usr 253:2 0 30G 0 lvm /usr

Creative Commons Attribution Share-alike 4.0 74

Jun 13 08:40:46 testvm1.both.org lsblk[630574]: ├─VG01-tmp 253:3 0 10G 0 lvm /tmp
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: ├─VG01-var 253:4 0 20G 0 lvm /var
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: └─VG01-home 253:5 0 10G 0 lvm /home
Jun 13 08:40:46 testvm1.both.org lsblk[630574]: sr0 11:0 1 1024M 0 rom
Jun 13 08:40:46 testvm1.both.org systemd[1]: myMonitor.service: Succeeded.
Jun 13 08:40:46 testvm1.both.org systemd[1]: Finished Logs system statistics to the systemd journal.
Jun 13 08:41:46 testvm1.both.org systemd[1]: Starting Logs system statistics to the systemd journal...
Jun 13 08:41:46 testvm1.both.org free[630580]: total used free shared...
Jun 13 08:41:46 testvm1.both.org free[630580]: Mem: 12635740 553488 10968564 8036...
Jun 13 08:41:46 testvm1.both.org free[630580]: Swap: 8388604 0 8388604
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: sda 8:0 0 120G 0 disk
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: ├─sda1 8:1 0 4G 0 part /boot
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: └─sda2 8:2 0 116G 0 part
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: ├─VG01-root 253:0 0 5G 0 lvm /
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: ├─VG01-swap 253:1 0 8G 0 lvm [SWAP]
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: ├─VG01-usr 253:2 0 30G 0 lvm /usr
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: ├─VG01-tmp 253:3 0 10G 0 lvm /tmp
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: ├─VG01-var 253:4 0 20G 0 lvm /var
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: └─VG01-home 253:5 0 10G 0 lvm /home
Jun 13 08:41:47 testvm1.both.org lsblk[630581]: sr0 11:0 1 1024M 0 rom
Jun 13 08:41:47 testvm1.both.org systemd[1]: myMonitor.service: Succeeded.
Jun 13 08:41:47 testvm1.both.org systemd[1]: Finished Logs system statistics to the systemd journal.

Be sure to check the status of both the timer and the service.

You probably noticed at least two things in the journal. First, you do not need to do anything
special to cause the STDOUT from the ExecStart triggers in the myMonitor.service unit
to be stored in the journal. That is all part of using systemd for running services. However, it
does mean that you might need to be careful about running scripts from a service unit and
how much STDOUT they generate.

The second thing is that the timer does not trigger exactly on the minute at :00 seconds or
even exactly one minute from the previous instance. This is intentional, but it can be
overridden if necessary (or if it just offends your sysadmin sensibilities).

The reason for this behavior is to prevent multiple services from triggering at exactly the
same time. For example, you can use time specifications such as Weekly, Daily, and more.
These shortcuts are all defined to trigger at 00:00:00 hours on the day they are triggered.
When multiple timers are specified this way, there is a strong likelihood that they would
attempt to start simultaneously.

systemd timers are intentionally designed to trigger somewhat randomly around the specified
time to try to prevent simultaneous triggers. They trigger semi-randomly within a time
window that starts at the specified trigger time and ends at the specified time plus one
minute. This trigger time is maintained at a stable position with respect to all other defined
timer units, according to the systemd.timer man page. You can see in the journal entries

Creative Commons Attribution Share-alike 4.0 75

above that the timer triggered immediately when it started and then about 46 or 47 seconds
after each minute.

Most of the time, such probabilistic trigger times are fine. When scheduling tasks such as
backups to run, so long as they run during off-hours, there will be no problems. A sysadmin
can select a deterministic start time, such as 01:05:00 in a typical cron job specification, to
not conflict with other tasks, but there is a large range of time values that will accomplish that.
A one-minute bit of randomness in a start time is usually irrelevant.

However, for some tasks, exact trigger times are an absolute requirement. For those, you can
specify greater trigger time-span accuracy (to within a microsecond) by adding a statement
like this to the Timer section of the timer unit file:

AccuracySec=1us

Time spans can be used to specify the desired accuracy as well as to define time spans for
repeating or one-time events. It recognizes the following units:

• usec, us, µs
• msec, ms
• seconds, second, sec, s
• minutes, minute, min, m
• hours, hour, hr, h
• days, day, d
• weeks, week, w
• months, month, M (defined as 30.44 days)
• years, year, y (defined as 365.25 days)

All the default timers in /usr/lib/systemd/system specify a much larger range for
accuracy because exact times are not critical. Look at some of the specifications in the
system-created timers:

grep Accur /usr/lib/systemd/system/*timer
/usr/lib/systemd/system/fstrim.timer:AccuracySec=1h
/usr/lib/systemd/system/logrotate.timer:AccuracySec=1h
/usr/lib/systemd/system/logwatch.timer:AccuracySec=12h
/usr/lib/systemd/system/mlocate-updatedb.timer:AccuracySec=24h
/usr/lib/systemd/system/raid-check.timer:AccuracySec=24h
/usr/lib/systemd/system/unbound-anchor.timer:AccuracySec=24h

Creative Commons Attribution Share-alike 4.0 76

View the complete contents of some of the timer unit files in the
/usr/lib/systemd/system directory to see how they are constructed.

You do not have to enable the timer in this experiment to activate it at boot time, but the
command to do so would be:

systemctl enable myMonitor.timer

The unit files you created do not need to be executable. You also did not enable the service
unit because it is triggered by the timer. You can still trigger the service unit manually from
the command line, should you want to. Try that and observe the journal.

See the man pages for systemd.timer and systemd.time for more information about
timer accuracy, event-time specifications, and trigger events.

Timer types
systemd timers have other capabilities that are not found in cron, which triggers only on
specific, repetitive, real-time dates and times. systemd timers can be configured to trigger
based on status changes in other systemd units. For example, a timer might be configured to
trigger a specific elapsed time after system boot, after startup, or after a defined service unit
activates. These are called monotonic timers. Monotonic refers to a count or sequence that
continually increases. These timers are not persistent because they reset after each boot.

Table 1 lists the monotonic timers along with a short definition of each, as well as the
OnCalendar timer, which is not monotonic and is used to specify future times that may or
may not be repetitive. This information is derived from the systemd.timer man page with a
few minor changes.

Timer Monotonic Definition

OnActiveSec= X
This defines a timer relative to the moment the timer is
activated.

OnBootSec= X This defines a timer relative to when the machine boots up.

OnStartupSec= X

This defines a timer relative to when the service manager
first starts. For system timer units, this is very similar to
OnBootSec=, as the system service manager generally starts
very early at boot. It's primarily useful when configured in
units running in the per-user service manager, as the user
service manager generally starts on first login only, not
during boot.

Creative Commons Attribution Share-alike 4.0 77

Timer Monotonic Definition

OnUnitActiveSec= X
This defines a timer relative to when the timer that is to be
activated was last activated.

OnUnitInactiveSec= X
This defines a timer relative to when the timer that is to be
activated was last deactivated.

OnCalendar=

This defines real-time (i.e., wall clock) timers with calendar
event expressions. See systemd.time(7) for more information
on the syntax of calendar event expressions. Otherwise, the
semantics are similar to OnActiveSec= and related settings.
This timer is the one most like those used with the cron
service.

Table 1: systemd timer definitions

Monotonic timers can use the same shortcut names for their time spans as the AccuracySec
statement mentioned before, but systemd normalizes those names to seconds. For example,
you might want to specify a timer that triggers an event one time, five days after the system
boots; that might look like: OnBootSec=5d. If the host booted at 2020-06-15 09:45:27,
the timer would trigger at 2020-06-20 09:45:27 or within one minute after.

Calendar event specifications
Calendar event specifications are a key part of triggering timers at desired repetitive times.
Start by looking at some specifications used with the OnCalendar setting.

systemd and its timers use a different style for time and date specifications than the format
used in crontab. It is more flexible than crontab and allows fuzzy dates and times in the
manner of the at command. It should also be familiar enough that it will be easy to
understand.

The basic format for systemd timers using OnCalendar= is DOW YYYY-MM-DD HH:MM:SS.
DOW (day of week) is optional, and other fields can use an asterisk (*) to match any value for
that position. All calendar time forms are converted to a normalized form. If the time is not
specified, it is assumed to be 00:00:00. If the date is not specified but the time is, the next
match might be today or tomorrow, depending upon the current time. Names or numbers can
be used for the month and day of the week. Comma-separated lists of each unit can be
specified. Unit ranges can be specified with .. between the beginning and ending values.

There are a couple interesting options for specifying dates. The Tilde (~) can be used to
specify the last day of the month or a specified number of days prior to the last day of the
month. The “/” can be used to specify a day of the week as a modifier.

Creative Commons Attribution Share-alike 4.0 78

Here are some examples of some time specifications used in OnCalendar statements.

Calendar event
specification Description

DOW YYYY-MM-DD
HH:MM:SS

--* 00:15:30
Every day of every month of every year at 15 minutes and 30 seconds
after midnight

Weekly Every Monday at 00:00:00
Mon *-*-* 00:00:00 Same as weekly
Mon Same as weekly
Wed 2020-*-* Every Wednesday in 2020 at 00:00:00
Mon..Fri 2021-*-* Every weekday in 2021 at 00:00:00
2022-6,7,8-1,15 01:15:00 The 1st and 15th of June, July, and August of 2022 at 01:15:00am

Mon *-05~03
The next occurrence of a Monday in May of any year which is also the
3rd day from the end of the month.

Mon..Fri *-08~04
The 4th day preceding the end of August for any years in which it also
falls on a weekday.

*-05~03/2
The 3rd day from the end of the month of May and then again two days
later. Repeats every year. Note that this expression uses the Tilde (~).

*-05-03/2
The third day of the month of may and then every 2nd day for the rest
of May. Repeats every year. Note that this expression uses the dash (-).

Table 2: Sample OnCalendar event specifications

Test calendar specifications
systemd provides an excellent tool for validating and examining calendar time event
specifications in a timer. The systemd-analyze calendar tool parses a calendar time
event specification and provides the normalized form as well as other interesting information
such as the date and time of the next "elapse," i.e., match, and the approximate amount of
time before the trigger time is reached.

First, look at a date in the future without a time (note that the times for Next elapse and
UTC will differ based on your local time zone):

systemd-analyze calendar 2030-06-17
 Original form: 2030-06-17
Normalized form: 2030-06-17 00:00:00
 Next elapse: Mon 2030-06-17 00:00:00 EDT

Creative Commons Attribution Share-alike 4.0 79

 (in UTC): Mon 2030-06-17 04:00:00 UTC
 From now: 10 years 0 months left

Now add a time. In this example, the date and time are analyzed separately as non-related
entities:

systemd-analyze calendar 2030-06-17 15:21:16
 Original form: 2030-06-17
Normalized form: 2030-06-17 00:00:00
 Next elapse: Mon 2030-06-17 00:00:00 EDT
 (in UTC): Mon 2030-06-17 04:00:00 UTC
 From now: 10 years 0 months left

 Original form: 15:21:16
Normalized form: *-*-* 15:21:16
 Next elapse: Mon 2020-06-15 15:21:16 EDT
 (in UTC): Mon 2020-06-15 19:21:16 UTC
 From now: 3h 55min left

To analyze the date and time as a single unit, enclose them together in quotes. Be sure to
remove the quotes when using them in the OnCalendar= event specification in a timer unit
or you get errors:

systemd-analyze calendar "2030-06-17 15:21:16"
Normalized form: 2030-06-17 15:21:16
 Next elapse: Mon 2030-06-17 15:21:16 EDT
 (in UTC): Mon 2030-06-17 19:21:16 UTC
 From now: 10 years 0 months left

Now test the entries in Table 2. I like the last one, especially:

systemd-analyze calendar "2022-6,7,8-1,15 01:15:00"
 Original form: 2022-6,7,8-1,15 01:15:00
Normalized form: 2022-06,07,08-01,15 01:15:00
 Next elapse: Wed 2022-06-01 01:15:00 EDT
 (in UTC): Wed 2022-06-01 05:15:00 UTC
 From now: 1 years 11 months left

Look at this example, in which I list the next five elapses for the timestamp expression:

systemd-analyze calendar --iterations=5 "Mon *-05~3"
 Original form: Mon *-05~3
Normalized form: Mon *-05~03 00:00:00
 Next elapse: Mon 2023-05-29 00:00:00 EDT
 (in UTC): Mon 2023-05-29 04:00:00 UTC
 From now: 2 years 11 months left
 Iter. #2: Mon 2028-05-29 00:00:00 EDT
 (in UTC): Mon 2028-05-29 04:00:00 UTC
 From now: 7 years 11 months left

Creative Commons Attribution Share-alike 4.0 80

 Iter. #3: Mon 2034-05-29 00:00:00 EDT
 (in UTC): Mon 2034-05-29 04:00:00 UTC
 From now: 13 years 11 months left
 Iter. #4: Mon 2045-05-29 00:00:00 EDT
 (in UTC): Mon 2045-05-29 04:00:00 UTC
 From now: 24 years 11 months left
 Iter. #5: Mon 2051-05-29 00:00:00 EDT
 (in UTC): Mon 2051-05-29 04:00:00 UTC
 From now: 30 years 11 months left

This gives you enough information to start testing your OnCalendar time specifications. The
systemd-analyze tool can be used for other interesting analyses, which I will begin to
explore in the next article in this series.

Summary
systemd timers can be used to perform the same kinds of tasks as the cron tool but offer
more flexibility in terms of the calendar and monotonic time specifications for triggering
events.

Even though the service unit you created for this experiment is usually triggered by the timer,
you can also use the systemctl start myMonitor.service command to trigger it at
any time. Multiple maintenance tasks can be scripted in a single timer; these can be Bash
scripts or Linux utility programs. You can run the service triggered by the timer to run all the
scripts, or you can run individual scripts as needed.

I have not yet seen any indication that cron and at will be deprecated. I hope that does not
happen because at is much easier to use for one-off task scheduling than systemd timers!

Creative Commons Attribution Share-alike 4.0 81

systemd calendar and timespans

systemd uses calendar time, specifying one or more moments in time to trigger events (such
as a backup program), as well as timestamped entries in the journal. It can also use timespans,
which define the amount of time between two events but are not directly tied to specific
calendar times.

In this chapter, I will look in more detail at how time and date are used and specified in
systemd. Also, because systemd uses two slightly different, non-compatible time formats, I
will explain how and when they are used.

Definitions
Here are some important time- and calendar-related systemd terms to understand:

• Absolute timestamp: A single unambiguous and unique point in time defined in the
format YYYY-MM-DD HH:MM:SS. The timestamp format specifies points in time when
events are triggered by timers. An absolute timestamp can represent only a single
point in time, such as 2025-04-15 13:21:05.

• Accuracy is the quality of closeness to the true time; in other words, how close to the
specified calendar time an event is triggered by a timer. The default accuracy for
systemd timers is defined as a one-minute timespan that starts at the defined calendar
time. For example, an event specified to occur at the OnCalendar time of 09:52:17
might be triggered at any time between then and 09:53:17.

• Calendar events are one or more specific times specified by a systemd timestamp in
the format YYYY-MM-DD HH:MM:SS. It can be a single point in time or a series of
points that are well-defined and for which the exact times can be calculated. systemd
journals use timestamps to mark each event with the exact time it occurred.

Creative Commons Attribution Share-alike 4.0 82

In systemd, exact time is specified in the timestamp format YYYY-MM-DD HH:MM:SS.
When only the YYYY-MM-DD portion is specified, the time defaults to 00:00:00. When
only the HH:MM:SS portion is specified, the date is the next calendar instance of that
time. If the time specified is before the current time, the next instance will be tomorrow,
and if the specified time is later than the current time, the next instance will be today.
This is the format systemd timers use to express OnCalendar times.

Recurring calendar events can be specified using special characters and formats that
represent fields with multiple value matches. For example, 2026-08-15..25
12:15:00 represents 12:15pm on the 15th through the 25th of August 2026 and would
trigger 11 matches. Calendar events can also be specified with an absolute timestamp.

• Timespan is the amount of time between two events or the duration of something like
an event or the time between two events. Timespans can be used to specify the
desired accuracy for an event to be triggered by a timer and to define the time to
elapse between events. systemd recognizes the following time units:

• usec, us, µs
• msec, ms
• seconds, second, sec, s
• minutes, minute, min, m
• hours, hour, hr, h
• days, day, d
• weeks, week, w
• months, month, M (defined as 30.44 days)
• years, year, y (defined as 365.25 days)

The systemd.time(7) man page has a complete description of time and date expressions
in timers and other systemd tools.

Calendar event expressions
Calendar event expressions are a key part of triggering timers at repetitive times. systemd
and its timers don't use the same style for time and date expressions as crontab uses.
systemd is also more flexible than crontab and allows fuzzy dates and times similar to the at
command.

The format OnCalendar= uses for calendar event expressions is DOW YYYY-MM-DD
HH:MM:SS. DOW (day of the week) is optional, and other fields can use an asterisk (*) to

Creative Commons Attribution Share-alike 4.0 83

match any value for that position. If the time is not specified, it is assumed to be 00:00:00. If
the date is not specified but the time is, the next match might be today or tomorrow,
depending upon the current time. All the various calendar time-expression formats are
converted to a normalized form, and the systemd-analyze calendar command shows
the normalized form of the time expression.

systemd provides an excellent tool for validating and examining calendar events used in an
expression. The systemd-analyze calendar tool parses a calendar time event expression
and provides the normalized form and other information, such as the date and time of the
next "elapse" (match) and the approximate amount of time before it reaches the trigger time.

Note: All the following commands can be performed by non-root users and the
times for "Next elapse" and "UTC" differ based on your local time zone.

First, look at the syntax of the systemd-analyze calendar command. Start with a date in the
future without a time. Because all the date unit fields are explicitly specified, this is a one-time
event:

$ systemd-analyze calendar 2030-06-17
 Original form: 2030-06-17
Normalized form: 2030-06-17 00:00:00
 Next elapse: Mon 2030-06-17 00:00:00 EDT
 (in UTC): Mon 2030-06-17 04:00:00 UTC
 From now: 10 years 0 months left

Add a time (in this example, the date and time are analyzed separately as non-related
entities):

$ systemd-analyze calendar 2030-06-17 15:21:16
 Original form: 2030-06-17
Normalized form: 2030-06-17 00:00:00
 Next elapse: Mon 2030-06-17 00:00:00 EDT
 (in UTC): Mon 2030-06-17 04:00:00 UTC
 From now: 10 years 0 months left

 Original form: 15:21:16
Normalized form: *-*-* 15:21:16
 Next elapse: Mon 2020-06-15 15:21:16 EDT
 (in UTC): Mon 2020-06-15 19:21:16 UTC
 From now: 3h 55min left

To analyze the date and time as a single entity, enclose them together in quotes:

Creative Commons Attribution Share-alike 4.0 84

$ systemd-analyze calendar "2030-06-17 15:21:16"
Normalized form: 2030-06-17 15:21:16
 Next elapse: Mon 2030-06-17 15:21:16 EDT
 (in UTC): Mon 2030-06-17 19:21:16 UTC
 From now: 10 years 0 months left

Specify one time earlier than the current time and one later. In this example, the current time
is 16:16 on 2019-05-15:

$ systemd-analyze calendar 15:21:16 22:15
 Original form: 15:21:16
Normalized form: *-*-* 15:21:16
 Next elapse: Fri 2019-05-17 15:21:16 EDT
 (in UTC): Fri 2019-05-17 19:21:16 UTC
 From now: 23h left

 Original form: 22:15
Normalized form: *-*-* 22:15:00
 Next elapse: Thu 2019-05-16 22:15:00 EDT
 (in UTC): Fri 2019-05-17 02:15:00 UTC
 From now: 5h 59min left

The systemd-analyze calendar tool does not work on timestamps. So things like
"tomorrow" or "today" will cause errors if you use them with the calendar sub-command
because they are timestamps rather than OnCalendar time formats:

$ systemd-analyze calendar "tomorrow"
Failed to parse calendar expression 'tomorrow': Invalid argument
Hint: this expression is a valid timestamp. Use 'systemd-analyze timestamp
"tomorrow"' instead?

The term "tomorrow" always resolves to tomorrow's date and a time of 00:00:00. You must
use the normalized expression format, YYYY-MM-DD HH:MM:SS, for this tool to work in
calendar mode. Despite this, the systemd-analyze calendar tool can still help you
understand the structure of the calendar time expressions used by systemd timers. I
recommend reading the systemd.time(7) man page for a better understanding of the
time formats that can be used with systemd timers.

Why would using a statement like OnCalendar=tomorrow fail when used in a timer?

Creative Commons Attribution Share-alike 4.0 85

Timestamps
Whereas calendar times can be used to match single or multiple points in time, timestamps
unambiguously represent a single point in time. For example, timestamps in the systemd
journal refer to a precise moment when each logged event occurs:

$ journalctl -S today
Hint: You are currently not seeing messages from other users and the system.
 Users in groups 'adm', 'systemd-journal', 'wheel' can see all messages.
 Pass -q to turn off this notice.
-- Logs begin at Wed 2020-06-17 10:08:41 EDT, end at Wed 2020-06-17 10:13:55 EDT.
--
Jun 17 10:08:41 testvm1.both.org systemd[1137785]: Started Mark boot as
successful after the user session has run 2 minutes.
Jun 17 10:08:41 testvm1.both.org systemd[1137785]: Started Daily Cleanup of
User's Temporary Directories.
Jun 17 10:08:41 testvm1.both.org systemd[1137785]: Reached target Paths.
Jun 17 10:08:41 testvm1.both.org systemd[1137785]: Reached target Timers.
[...]
Jun 17 10:13:55 testvm1.both.org systemd[1137785]: systemd-tmpfiles-
clean.service: Succeeded.
Jun 17 10:13:55 testvm1.both.org systemd[1137785]: Finished Cleanup of User's
Temporary Files and Directories.

The systemd-analyze timestamp command can be used to analyze timestamp
expressions the same way it analyzes calendar expressions. Here is an example from the
journal data stream:

$ systemd-analyze timestamp "Jun 17 10:08:41"
Failed to parse "Jun 17 10:08:41": Invalid argument
[student@testvm1 ~]$ systemd-analyze timestamp Jun 17 10:08:41
Failed to parse "Jun": Invalid argument

Failed to parse "17": Invalid argument
Hint: this expression is a valid timespan. Use 'systemd-analyze timespan "17"'
instead?

 Original form: 10:08:41
Normalized form: Wed 2020-06-17 10:08:41 EDT
 (in UTC): Wed 2020-06-17 14:08:41 UTC
 UNIX seconds: @1592402921
 From now: 11min ago

Why is the data copied from the journal not considered to be a valid timestamp? I have no
idea. It seems pretty dumb to print the timestamps for the journal in a format that cannot be

Creative Commons Attribution Share-alike 4.0 86

used by the tool designed to analyze timestamps. But look at the time specified as the
beginning of the log:

$ systemd-analyze timestamp "Wed 2020-06-17 10:08:41"
 Original form: Wed 2020-06-17 10:08:41
Normalized form: Wed 2020-06-17 10:08:41 EDT
 (in UTC): Wed 2020-06-17 14:08:41 UTC
 UNIX seconds: @1592402921
 From now: 15min ago

OK, so that time is a valid timestamp. The key is that the systemd-analyze tool only
recognizes the DOW YYYY-MM-DD HH:MM:SS format. As the error messages state, it does
not recognize month names or standalone days of the month, such as 17. It is very exacting
because the only way to ensure events are triggered by timers at desired points in time or
intervals is to be completely accurate with how they are specified.

Any unambiguously expressed time, such as 2020-06-17 10:08:41, is a timestamp
because it can only occur once. A timestamp that will occur in the future can also be used in a
systemd timer, and that timer will only trigger its defined action once.

A time expressed somewhat more ambiguously, such as 2025-*-* 22:15:00, can only be a
calendar time used in the OnCalendar statement in a timer unit file. This expression will
trigger an event every day in the year 2025 at 22:15:00 (10:15:00pm).

But still—why not use valid timestamps in the journal output? I still don't know, but with a bit of
command-line manipulation, you can convert the default time display into valid timestamps.
The journalctl command tool has some options that can display the timestamps in a
format you can easily use with the systemd-analyze tool:

journalctl -o short-full
[...]
Fri 2020-06-26 12:51:36 EDT testvm1.both.org systemd[1]: Finished Update UTMP
about System Runlevel Changes.
Fri 2020-06-26 12:51:36 EDT testvm1.both.org systemd[1]: Startup finished in
2.265s (kernel) + 4.883s (initrd) + 22.645s (userspace) = 29.793s.
Fri 2020-06-26 12:51:36 EDT testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=systemd-update-utmp-runlevel>
Fri 2020-06-26 12:51:36 EDT testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=systemd-update-utmp-runlevel >
Fri 2020-06-26 12:51:36 EDT testvm1.both.org crond[959]: (CRON) INFO (running
with inotify support)
Fri 2020-06-26 12:51:36 EDT testvm1.both.org ModemManager[759]: <info> Couldn't
check support for device '/sys/devices/pci0000:00/0000:00:03.0': not >
Fri 2020-06-26 12:51:37 EDT testvm1.both.org VBoxService[804]: 16:51:37.196960
timesync vgsvcTimeSyncWorker: Radical guest time change: -14 388 436 32>

Creative Commons Attribution Share-alike 4.0 87

Fri 2020-06-26 12:51:39 EDT testvm1.both.org chronyd[827]: Selected source
192.168.0.52
Fri 2020-06-26 12:51:39 EDT testvm1.both.org chronyd[827]: System clock TAI
offset set to 37 seconds
[...]

You can now use the timestamps like this:

systemd-analyze timestamp "2020-06-26 12:51:36"
 Original form: 2020-06-26 12:51:36
Normalized form: Fri 2020-06-26 12:51:36 EDT
 (in UTC): Fri 2020-06-26 16:51:36 UTC
 UNIX seconds: @1593190296
 From now: 2h 37min ago

You can also display the journal timestamps in a monotonic format that shows the number of
seconds since boot:

journalctl -o short-monotonic
[0.000000] testvm1.both.org kernel: Linux version 5.6.6-300.fc32.x86_64
(mockbuild@bkernel03.phx2.fedoraproject.org) (gcc version 10.0.1 20200328 >
[0.000000] testvm1.both.org kernel: Command line:
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.6.6-300.fc32.x86_64 root=/dev/mapper/VG01-root
ro resume=/dev/>
[0.000000] testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x001:
'x87 floating point registers'
[...]
[0.000000] testvm1.both.org kernel: x86/fpu: xstate_offset[2]: 576,
xstate_sizes[2]: 256
[0.000000] testvm1.both.org kernel: x86/fpu: Enabled xstate features 0x7,
context size is 832 bytes, using 'standard' format.
[0.000000] testvm1.both.org kernel: BIOS-provided physical RAM map:
[0.000000] testvm1.both.org kernel: BIOS-e820: [mem 0x0000000000000000-
0x000000000009fbff] usable
[0.000000] testvm1.both.org kernel: BIOS-e820: [mem 0x000000000009fc00-
0x000000000009ffff] reserved
[...]
[29337.443404] testvm1.both.org systemd[1]: sysstat-collect.service: Succeeded.
[29337.443504] testvm1.both.org systemd[1]: Finished system activity accounting
tool.
[29394.784506] testvm1.both.org CROND[2253]: (root) CMD (run-parts
/etc/cron.hourly)
[29394.792113] testvm1.both.org run-parts[2256]: (/etc/cron.hourly) starting
0anacron
[29394.799468] testvm1.both.org run-parts[2262]: (/etc/cron.hourly) finished
0anacron

Creative Commons Attribution Share-alike 4.0 88

Read the journalctl man page for a complete list of the timestamp format options (among
other things).

Timespans
Timespans are primarily used in systemd timers to define a specific span of time between
events. This could be used to trigger events so that they occur a specified amount of time
after system startup or after a previous instance of the same event. For example, here is a
sample expression in the timer unit file to trigger an event 32 minutes after system startup:

OnStartupSec=32m

The default accuracy for triggering systemd timers is a time window starting at the specified
time and lasting one minute. You can increase trigger timespan accuracy to within a
microsecond by adding a statement like the following to the Timer section of the timer-unit
file:

AccuracySec=1us

The systemd-analyze timespan command can help ensure you are using a valid
timespan in the unit file. These samples will get you started:

$ systemd-analyze timespan 15days
Original: 15days
 μs: 1296000000000
 Human: 2w 1d
[student@testvm1 ~]$ systemd-analyze timespan "15days 6h 32m"
Original: 15days 6h 32m
 μs: 1319520000000
 Human: 2w 1d 6h 32min

Experiment with these and some of your own:

• "255days 6h 31m"
• "255days 6h 31m 24.568ms"

Final thoughts
Timespans are used to schedule timer events a specified interval after a defined event such
as startup. Calendar timestamps can be used to schedule timer events on specific calendar
days and times, either as one-offs or repeating. Timestamps are also used on systemd journal

Creative Commons Attribution Share-alike 4.0 89

entries, although not in a default format that can be used directly in tools like systemd-
analyze.

All of this was more than just a little confusing to me when I started working with systemd
timers and creating calendar and timestamp expressions to trigger events. That was partly
because of the similar—but not quite identical—formats used for specifying timestamps and
calendar event trigger times. I hope that this has helped to clarify all of this for you.

Creative Commons Attribution Share-alike 4.0 90

Using systemd journals to
troubleshoot transient problems

Problem determination can be as much an art as a science, and sometimes, it seems even a
little magic can be useful. Everyone has encountered situations where a reported failure could
not be reproduced, which is always frustrating for both the user and the system administrator.
Even home appliances and automobiles can be obstinate and refuse to fail when the service
person shows up.

Anthropomorphism aside, sysadmins have some tools that can show what has been
happening in their Linux computers with varying degrees of granularity. There are tools, like
top, htop, glances, sar, iotop, tcpdump, traceroute, mtr, iptraf-ng, df, du, and many more, all of
which can display a host's current state, and several of which can produce logs of various
levels of detail.

While these tools can be used to find ongoing problems, they are not particularly helpful for
transient problems or those with no directly observable symptoms—not observable, at least,
until some major and possibly catastrophic problem occurs.

An important tool I use for problem determination is the system logs—and with systemd, the
system journals. The systemd journal is always one of the first tools I turn to when solving a
problem, especially the problems that don't seem to happen when I am watching. It took me a
long time at the beginning of my sysadmin career to realize the wealth of information in the
log files, and this discovery greatly improved my speed in resolving problems.

In this chapter, I explore some details about the systemd journal, how it works, and ways to use
journalctl to locate and identify problems.

Creative Commons Attribution Share-alike 4.0 91

About journals
The purpose of any log or journal is to maintain a time-sequenced history of the normal
activities of the services and programs that run on a host and to record any errors or warning
messages that occur. The log messages used to be maintained in separate files in /var/log,
usually one file for the kernel and separate ones for most of the services running on the host.
Unfortunately, the large number of log files could spread out necessary information and delay
the discovery of a problem's root cause. This could be especially time-consuming when you're
trying to determine what was happening in a system when an error occurred.

The old /var/log/dmesg file was usually used for the kernel, but that file was discontinued
several years ago in favor of using the dmesg command to display the same information and
integrating those messages (and more) into the /var/log/messages file. This merger of
other logs into the messages file helped speed problem determination by keeping much of
the data in one file, but there were still many services whose logs were not integrated into the
more central messages file.

The systemd journal is designed to collect all messages into a single, unified structure that
can show a complete picture of everything that happened in a system at and around a specific
time or event. Because the events, regardless of the source, are in one place and in time
sequence, it is possible to see at a glance everything happening at a specific point or range of
times. In my opinion, this is one of the main benefits of systemd journaling.

About the systemd journal
The systemd journaling service is implemented by the systemd-journald daemon.
According to the systemd-journald man page :

systemd-journald is a system service that collects and stores logging data. It
creates and maintains structured, indexed journals based on logging information
that is received from a variety of sources:

• Kernel log messages, via kmsg
• Simple system log messages, via the libc syslog(3) call
• Structured system log messages via the native Journal API, see

sd_journal_print(3)
• Standard output and standard error of service units. For further details see

below.
• Audit records, originating from the kernel audit subsystem

Creative Commons Attribution Share-alike 4.0 92

https://man7.org/linux/man-pages/man8/systemd-journald.8.html
https://man7.org/linux/man-pages/man8/systemd-journald.8.html

The daemon will implicitly collect numerous metadata fields for each log messages
in a secure and unfakeable way. See systemd.journal-fields(7) for more information
about the collected metadata.

Log data collected by the journal is primarily text-based but can also include binary
data where necessary. Individual fields making up a log record stored in the journal
may be up to 2^64-1 bytes in size.

Configuration changes
The systemd journal daemon can be configured using the /etc/systemd/journald.conf
file. For many hosts, this file does not need any changes because the defaults are quite
reasonable. Look at your journald.conf file now, if you have not already.

The most common configuration changes you might consider would specify the maximum
journal file size, the number of older journal files, and the maximum file-retention times. The
primary reason to make those changes would be to reduce the storage space used by the
journal if you have a small storage device. In a mission-critical environment, you may also want
to reduce the amount of time between syncing journal data stored in RAM memory to the
storage device.

The journald.conf man page has more details.

Controversies about the data format
One of the controversies surrounding systemd is the binary format in which the journal
contents are stored. Some arguments against systemd are based on the systemd journal
being stored in a binary format. This would seem to be contrary to the Unix/Linux philosophy
to use ASCII text for data, which is one argument people use to justify their dislike of systemd.
For example, Doug McIlroy, the inventor of the pipes, said:

"This is the Unix Philosophy: Write programs that do one thing well. Write programs
to work together. Write programs to handle text steams, because that is a universal
interface." —Doug McIlroy, quoted in Eric S. Raymond's book The Art of Unix
Programming

However, these arguments seem to be based on at least a partial misconception because the
man page clearly states that the data "is primarily text-based," although it allows for binary
data forms. Linux kernel creator Linus Torvalds, who is always clear about his feelings, said:

Creative Commons Attribution Share-alike 4.0 93

http://www.catb.org/esr/writings/taoup/html/
http://www.catb.org/esr/writings/taoup/html/
https://en.wikipedia.org/wiki/Douglas_McIlroy
https://man7.org/linux/man-pages/man5/journald.conf.5.html
https://man7.org/linux/man-pages/man5/journald.conf.5.html

"I don't actually have any particularly strong opinions on systemd itself. I've had
issues with some of the core developers that I think are much too cavalier about
bugs and compatibility, and I think some of the design details are insane (I dislike
the binary logs, for example), but those are details, not big issues." —Linus Torvalds,
quoted in ZDNet's "Linus Torvalds and others on Linux's systemd" in 2014

The systemd journal files are stored in one or more subdirectories of /var/log/journal.
Log into a test system where you have root access, and make /var/log/journal the
present working directory (PWD). List the subdirectories there, choose one, and make it the
PWD. You can look at these files in a number of ways. I started with the stat command (note
that the journal file names on your host will be different from mine):

stat system@7ed846aadf1743139083681ec4042037-0000000000000001-
0005a99c0280fd5f.journal
 File: system@7ed846aadf1743139083681ec4042037-0000000000000001-
0005a99c0280fd5f.journal
 Size: 8388608 Blocks: 16392 IO Block: 4096 regular file
Device: fd04h/64772d Inode: 524384 Links: 1
Access: (0640/-rw-r-----) Uid: (0/ root) Gid: (190/systemd-journal)
Access: 2020-07-13 08:30:05.764291231 -0400
Modify: 2020-07-04 07:33:52.916001110 -0400
Change: 2020-07-04 07:33:52.916001110 -0400
 Birth: -

The journal file is identified as a "regular" file, which is not especially helpful. The file
command identifies it as a "journal" file, but you already know that. Look inside the file with
the dd command. The following command sends the output data stream to STDOUT; you
may want to pipe it through the less pager:

dd if=system@7ed846aadf1743139083681ec4042037-0000000000000001-
0005a99c0280fd5f.journal | less
[...]
9 P1 8 9_SOURCE_MONOTONIC_TIMESTAMP=191726 / P 9MESSAGE=Inode-cache hash � � �� ��� �� ����
table entries: 1048576 (order: 11, 8388608 bytes, linear) hx�
9 P1 p 9 /� � � ��
P b 9 9_SOURCE_MONOTONIC_TIMESTAMP=191825 pdXY 7p 9 9MESSAGE=mem auto-�� � ������ �� � � � ��

init: stack:off, heap alloc:off, heap free:off i� ��
(n O @Y Z 82 7X 8 8 ǱR 8<~B 4 < �� � ��� � ����� ս��� ��� � ������� �� ����� � � �
8tM˞8$ 8 Ж h9 & 9 `@ 9 pdXY 7b ͺ WV 9 9_SOURCE_MONOTONIC_TIM� ���� �� �� � ������ ����� � � � ��� �� ��
ESTAMP=234745 4 h@ 9 9MESSAGE=Memory: 12598028K/12963384K available (14339K ���� � � ��
kernel code, 2406K rwdata, 8164K rodata, 2468K init, 5072K b
ss, 365356K reserved, 0K cma-reserved) j (n O @Y � ���� � ��� �

] m 82 7X 8 8 ǱR 8<~B 4 < ���� �� � ��� � ������� �� ����� � � �
8tM˞8$ 8 Ж h9 & 9 ͺ WV 9� ���� �� �� � ����� ��� �� ���

Creative Commons Attribution Share-alike 4.0 94

https://www.zdnet.com/article/linus-torvalds-and-others-on-linuxs-systemd/

4 hbB a ^ 9 9_SOURCE_MONOTONIC_TIMESTAMP=234758 3 9 9MESSAGE=random: � ��� �� �� �� �� ����� ��
get_random_u64 called from __kmem_cache_create+0x3e/0x610 wi
th crng_init=0 k (n O @Y � ��� � ��� �

j 82 7X 8C X Y" 8 8 ǱR 8<~B 4 < ���� ������ ��� �� � � �� ������� �� ����� � � �
8tM˞8$ 8 Ж à 9B a 9 3 b 8 ȭ 9h 9_SO 9h 9MESSAGE=SLUB: HWalign=64, � ���� �� � � ��� ��� � ��� � � ����� � � �
Order=0-3, MinObjects=0, CPUs=4, Nodes=1 l (n O @Y � ���� � ��� �

z X 82 7X 8 8 ǱR 8<~B 4 < 8tM˞������ �� � ��� � ������� �� ����� � � � �
b (+I) x 9 9_SOURCE_MONOTONIC_TIMESTAMP=235444r %/p 9 9MESSAGE=Kernel/User page� � � � � �� �
tables isolation: enabled m (n O @Y k B0 8� ���� � ��� � ���� �� ��
2 7X 8 8 ǱR 8<~B 4 < ��� � ������� �� ����� � � �
8tM˞8$ 8 Ж h9 & 8 9 (+I)Ҡ 9 %/pb8O{ W 8 9 9_SOURCE_MONOTONIC_TIMESTA� ���� �� �� � ���� � � � � ��� � ��
MP=235464u N` FP M 9� � ��
9MESSAGE=ftrace: allocating 41361 entries in 162 pages n (n O @Y�� � ���� � ��� �

[...]

Even this small portion of the data stream from the dd command shows an interesting mixture
of ASCII text and binary data. Another useful tool is the strings command, which simply
displays all the ASCII text strings contained in a file and ignores the binary data:

strings system@7ed846aadf1743139083681ec4042037-0000000000000001-
0005a99c0280fd5f.journal
[...]
MESSAGE=Linux version 5.7.6-201.fc32.x86_64
(mockbuild@bkernel01.iad2.fedoraproject.org) (gcc version 10.1.1 20200507 (Red
Hat 10.1.1-1) (GC
C), GNU ld version 2.34-3.fc32) #1 SMP Mon Jun 29 15:15:52 UTC 2020
MESSAGE
_BOOT_ID=6e944f99ebd9405984090f829a927fa4
_BOOT_ID
_MACHINE_ID=3bccd1140fca488187f8a1439c832f07
_MACHINE_ID
_HOSTNAME=testvm1.both.org
_HOSTNAME
PRIORITY=6
MESSAGE=Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.7.6-201.fc32.x86_64
root=/dev/mapper/VG01-root ro resume=/dev/mapper/VG01-swap rd.lv
m.lv=VG01/root rd.lvm.lv=VG01/swap rd.lvm.lv=VG01/usr selinux=0
MESSAGE=x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
MESSAGE=x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
MESSAGE=x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
Z_g3;
MESSAGE=x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using
'standard' format.
[...]

Creative Commons Attribution Share-alike 4.0 95

This data can be interpreted by humans, and this particular segment looks very similar to the
output data stream from the dmesg command. I'll leave you to explore further on your own,
but my conclusion is that the journal files are clearly a mixture of binary and ASCII text. That
mix makes it cumbersome to use traditional text-based Linux tools to extract usable data. But
there is a better way that provides many possibilities for extracting and viewing journal data.

About journalctl
The journalctl command is designed to extract usable information from the systemd
journals using powerful and flexible criteria for identifying the desired data. Previous articles in
this series have described journalctl, and there is more to know.

I'll review a bit first and start with some basics in case you have not read the previous articles
or just need a refresher.

You can use the journalctl command without any options or arguments to view the
systemd journal that contains all journal and log information:

journalctl
-- Logs begin at Mon 2020-06-08 07:47:20 EDT, end at Thu 2020-07-16 10:30:43 EDT.
--
Jun 08 07:47:20 testvm1.both.org kernel: Linux version 5.6.6-300.fc32.x86_64
(mockbuild@bkernel03.phx2.fedoraproject.org) (gcc version 10.0>
Jun 08 07:47:20 testvm1.both.org kernel: Command line:
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.6.6-300.fc32.x86_64 root=/dev/mapper/VG01-root
ro >
Jun 08 07:47:20 testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x001:
'x87 floating point registers'
Jun 08 07:47:20 testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x002:
'SSE registers'
[...]
Jul 16 10:00:42 testvm1.both.org systemd[1]: sysstat-collect.service: Succeeded.
Jul 16 10:00:42 testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=sysstat-collect comm="systemd>
Jul 16 10:00:42 testvm1.both.org systemd[1]: Finished system activity accounting
tool.
Jul 16 10:00:42 testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=sysstat-collect comm="systemd">
Jul 16 10:01:01 testvm1.both.org CROND[378562]: (root) CMD (run-parts
/etc/cron.hourly)
Jul 16 10:01:01 testvm1.both.org run-parts[378565]: (/etc/cron.hourly) starting
0anacron
[...]

Creative Commons Attribution Share-alike 4.0 96

You can also explicitly show the same data the dmesg command presents. Open two terminal
sessions next to each other and issue the dmesg command in one and the following command
in the other:

journalctl --dmesg

The only difference you should see is the time format. The dmesg command is in a monotonic
format that shows the number of seconds since the system boot. The journalctl output is
in a date and time format. The short-monotonic option displays the time since boot:

journalctl --dmesg -o short-monotonic
-- Logs begin at Mon 2020-06-08 07:47:20 EDT, end at Mon 2020-07-20 13:01:01 EDT.
--
[0.000000] testvm1.both.org kernel: Linux version 5.7.6-201.fc32.x86_64
(mockbuild@bkernel01.iad2.fedoraproject.org) (gcc version 10.1.>
[0.000000] testvm1.both.org kernel: Command line:
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.7.6-201.fc32.x86_64 root=/dev/mapper/VG01-root
ro r>
[0.000000] testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x001:
'x87 floating point registers'
[0.000000] testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x002:
'SSE registers'
[0.000000] testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x004:
'AVX registers'
[0.000000] testvm1.both.org kernel: x86/fpu: xstate_offset[2]: 576,
xstate_sizes[2]: 256
[0.000000] testvm1.both.org kernel: x86/fpu: Enabled xstate features 0x7,
context size is 832 bytes, using 'standard' format.
<snip>
[0.000002] testvm1.both.org kernel: clocksource: kvm-clock: mask:
0xffffffffffffffff max_cycles: 0x1cd42e4dffb, max_idle_ns: 8815905914>
[0.000005] testvm1.both.org kernel: tsc: Detected 2807.988 MHz processor
[0.001157] testvm1.both.org kernel: e820: update [mem 0x00000000-0x00000fff]
usable ==> reserved
[...]
lines 624-681/681 (END)

The journalctl command has many options, including the -o (output) option with several
suboptions that allow you to select a time and date format that meets different sets of
requirements. I have listed most of them below, along with a short description that I expanded
or modified from the journalctl man page. Note that the primary difference between most
of these is the format of the date and time, and the other information remains the same.

Creative Commons Attribution Share-alike 4.0 97

journalctl time and date formats
• short: This is the default format and generates an output that is most closely like the

formatting of classic syslog files, showing one line per journal entry. This option shows
journal metadata including the monotonic time since boot, the fully qualified hostname,
and the unit name such as the kernel, DHCP, etc.

Jul 20 08:43:01 testvm1.both.org kernel: Inode-cache hash table entries:
1048576 (order: 11, 8388608 bytes, linear)

• short-full: This format is very similar to the default but shows timestamps in the
format the --since= and --until= options accept. Unlike the timestamp
information shown in short output mode, this mode includes weekday, year, and
timezone information in the output and is locale-independent.

Mon 2020-06-08 07:47:20 EDT testvm1.both.org kernel: x86/fpu: Supporting
XSAVE feature 0x004: 'AVX registers'

• short-iso: The short-iso format is very similar to the default, but shows ISO 8601
wallclock timestamps.

2020-06-08T07:47:20-0400 testvm1.both.org kernel: kvm-clock: Using msrs
4b564d01 and 4b564d00

• short-iso-precise: This format is the same as short-iso but includes full microsecond
precision.

2020-06-08T07:47:20.223738-0400 testvm1.both.org kernel: Booting
paravirtualized kernel on KVM

• short-monotonic: Very similar to the default but shows monotonic timestamps
instead of wallclock timestamps.

[2.091107] testvm1.both.org kernel: ata1.00: ATA-6: VBOX HARDDISK, 1.0,
max UDMA/133

• short-precise: This format is also similar to the default but shows classic syslog
timestamps with full microsecond precision.

Jun 08 07:47:20.223052 testvm1.both.org kernel: BIOS-e820: [mem
0x000000000009fc00-0x000000000009ffff] reserved

Creative Commons Attribution Share-alike 4.0 98

• short-unix: Like the default, but shows seconds passed since January 1, 1970, UTC
instead of wallclock timestamps ("Unix time"). The time is shown with microsecond
accuracy.

1591616840.232165 testvm1.both.org kernel: tcp_listen_portaddr_hash hash
table entries: 8192

• cat: Generates a very terse output only showing the message of each journal entry
with no metadata, not even a timestamp.

ohci-pci 0000:00:06.0: irq 22, io mem 0xf0804000

• verbose: This format shows the full data structure for all the entry items with all fields.
This is the format option that is most different from all the others.

Mon 2020-06-08 07:47:20.222969 EDT
[s=d52ddc9f3e8f434b9b9411be2ea50b1e;i=1;b=dcb6dcc0658e4a8d8c781c21a2c6360d;
m=242d7f;t=5a7912c6148f9;x=8f>
 _SOURCE_MONOTONIC_TIMESTAMP=0
 _TRANSPORT=kernel
 PRIORITY=5
 SYSLOG_FACILITY=0
 SYSLOG_IDENTIFIER=kernel
 MESSAGE=Linux version 5.6.6-300.fc32.x86_64
(mockbuild@bkernel03.phx2.fedoraproject.org) (gcc version 10.0.1 20200328
(Red Hat 10.0.1-0>
 _BOOT_ID=dcb6dcc0658e4a8d8c781c21a2c6360d
 _MACHINE_ID=3bccd1140fca488187f8a1439c832f07
 _HOSTNAME=testvm1.both.org

Other choices, available with the -o option, allow exporting the data in various formats such
as binary or JSON. I also find the -x option illuminating because it can show additional
explanatory messages for some journal entries. If you try this option, be aware that it can
greatly increase the output data stream. For example, look at the additional information for an
entry like this:

[4.503737] testvm1.both.org systemd[1]: Starting File System Check on
/dev/mapper/VG01-root...
[4.691555] testvm1.both.org systemd-fsck[548]: root: clean, 1813/327680
files, 48555/1310720 blocks
[4.933065] testvm1.both.org systemd[1]: Finished File System Check on
/dev/mapper/VG01-root.

Creative Commons Attribution Share-alike 4.0 99

That expands to:

[4.503737] testvm1.both.org systemd[1]: Starting File System Check on
/dev/mapper/VG01-root...
-- Subject: A start job for unit systemd-fsck-root.service has begun execution
-- Defined-By: systemd
-- Support: https://lists.freedesktop.org/mailman/listinfo/systemd-devel
--
-- A start job for unit systemd-fsck-root.service has begun execution.
--
-- The job identifier is 36.
[4.691555] testvm1.both.org systemd-fsck[548]: root: clean, 1813/327680
files, 48555/1310720 blocks
[4.933065] testvm1.both.org systemd[1]: Finished File System Check on
/dev/mapper/VG01-root.
-- Subject: A start job for unit systemd-fsck-root.service has finished
successfully
-- Defined-By: systemd
-- Support: https://lists.freedesktop.org/mailman/listinfo/systemd-devel
--
-- A start job for unit systemd-fsck-root.service has finished successfully.
--
-- The job identifier is 36

There is some new information here, but I think the main benefit is that the information is
contextualized to clarify the original terse messages to some degree.

Narrowing the search
Most of the time, it is not necessary or even desirable to list all the journal entries and
manually search through them. Sometimes I look for entries related to a specific service, and
other times I look for entries that happened at specific times. The journalctl command
provides powerful options that allow you to see only the data you are interested in finding.

Start with the --list-boots option, which lists all the boots during the time period when
journal entries exist. Note that the journalctl.conf file may specify that journal entries
are discarded after they reach a certain age or after the storage device (HDD/SSD) space
taken by the journals reaches a specified maximum amount:

journalctl --list-boots
-10 dcb6...360d Mon 2020-06-08 07:47:20 EDT—Mon 2020-06-08 07:53:05 EDT
 -9 7d61...c2a4 Fri 2020-07-03 15:50:06 EDT—Fri 2020-07-03 18:21:23 EDT
 -8 1b3a...2206 Fri 2020-07-03 18:21:58 EDT—Fri 2020-07-03 22:10:54 EDT
 -7 5fef...61ae Fri 2020-07-03 22:18:41 EDT—Sat 2020-07-04 06:50:19 EDT

Creative Commons Attribution Share-alike 4.0 100

 -6 6e94...7fa4 Sat 2020-07-04 07:33:25 EDT—Sat 2020-07-04 07:58:59 EDT
 -5 ec8b...32959 Sat 2020-07-04 08:12:06 EDT—Sat 2020-07-04 09:12:47 EDT
 -4 cb17...9a99 Sat 2020-07-04 10:19:53 EDT—Sat 2020-07-04 11:31:03 EDT
 -3 4fe3...dbb0 Sat 2020-07-04 07:59:58 EDT—Sun 2020-07-05 09:39:30 EDT
 -2 06fb...446c Mon 2020-07-06 06:27:05 EDT—Mon 2020-07-13 08:50:06 EDT
 -1 33db...ac37 Mon 2020-07-13 04:50:33 EDT—Thu 2020-07-16 13:49:32 EDT
 0 75c9...ee50 Mon 2020-07-20 08:43:01 EDT—Fri 2020-07-24 12:44:06 EDT

The most recent boot ID appears at the bottom; it is the long, random hex number. You can
use this data to view the journals for a specific boot. This can be specified using the boot
offset number in the left-most column or the UUID in the second column. This command
displays the journal for the boot instance with the offset of -2—the second previous boot
from the current one:

journalctl -b -2
-- Logs begin at Mon 2020-06-08 07:47:20 EDT, end at Fri 2020-07-24 12:44:06 EDT.
--
Jul 06 06:27:05 testvm1.both.org kernel: Linux version 5.7.6-201.fc32.x86_64
(mockbuild@bkernel01.iad2.fedoraproject.org) (gcc version 10.1>
Jul 06 06:27:05 testvm1.both.org kernel: Command line:
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.7.6-201.fc32.x86_64 root=/dev/mapper/VG01-root
ro >
Jul 06 06:27:05 testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x001:
'x87 floating point registers'
Jul 06 06:27:05 testvm1.both.org kernel: x86/fpu: Supporting XSAVE feature 0x002:
'SSE registers'
<SNIP>

Or you could use the UUID for the desired boot. The offset numbers change after each boot,
but the UUID does not:

journalctl -b 06fb81f1b29e4f68af9860844668446c

The -u option allows you to select specific units to examine. You can use a unit name or a
pattern for matching, and you can use this option multiple times to match multiple units or
patterns. In this example, I used it in combination with -b to show chronyd journal entries for
the current boot:

journalctl -u chronyd -b
-- Logs begin at Mon 2020-06-08 07:47:20 EDT, end at Sun 2020-07-26 09:10:47 EDT.
--
Jul 20 12:43:31 testvm1.both.org systemd[1]: Starting NTP client/server...

Creative Commons Attribution Share-alike 4.0 101

Jul 20 12:43:31 testvm1.both.org chronyd[811]: chronyd version 3.5 starting
(+CMDMON +NTP +REFCLOCK +RTC +PRIVDROP +SCFILTER +SIGND +ASYNCD>
Jul 20 12:43:31 testvm1.both.org chronyd[811]: Frequency -0.021 +/- 0.560 ppm
read from /var/lib/chrony/drift
Jul 20 12:... chronyd[811]: Using right/UTC timezone to obtain leap second data
Jul 20 12:43:31 testvm1.both.org systemd[1]: Started NTP client/server.
Jul 20 12:44:00 testvm1.both.org chronyd[811]: Selected source 192.168.0.52
Jul 20 12:44:00 testvm1.both.org chronyd[811]: System clock TAI offset set to 37s
Jul 20 12:44:00 testvm1.both.org chronyd[811]: System clock wrong by 1.412227
seconds, adjustment started
Jul 20 12:44:01 testvm1.both.org chronyd[811]: System clock was stepped by
1.412227 seconds

Suppose you want to look at events that were recorded between two arbitrary times. You can
also use -S (--since) and -U (--until) to specify the beginning and ending times. The
following command displays journal entries starting at 15:36:00 on July 24, 2020, through the
current time:

journalctl -S "2020-07-24 15:36:00"

And this command displays all journal entries starting at 15:36:00 on July 24, 2020, until
16:00:00 on July 25:

journalctl -S "2020-07-24 15:36:00" -U "2020-07-25 16:00:00"

This command combines -S, -U, and -u to give journal entries for the NetworkManager
service unit starting at 15:36:00 on July 24, 2020, until 16:00:00 on July 25:

journalctl -S "2020-07-24 15:36:00" -U "2020-07-25 16:00:00" -u NetworkManager

Some syslog facilities, such as cron, auth, mail, daemon, user, and more, can be viewed with
the --facility option. You can use --facility=help to list the available facilities. In this
example, the mail facility is not the Sendmail service that would be used for an email service,
but the local client used by Linux to send email to root as event notifications. Sendmail
actually has two parts, the server, which (for Fedora and related distributions) is not installed
by default, and the client, which is always installed so that it can be used to deliver system
emails to local recipients, especially root:

journalctl --facility=mail

Creative Commons Attribution Share-alike 4.0 102

The journalctl man page lists all the options that can be used to narrow searches. The
table below summarizes some of the options I use most frequently. Most of these options can
be used in various combinations to further narrow a search.

Options to narrow searches of the journal
Option Description

--list-boots
This displays a list of boots. The information can be used to show
journal entries only for a particular boot.

-b [offset|boot ID]
This specifies which boot to display information for. It includes all
journal entries from that boot through shutdown or reboot.

--facility=[facility
name]

This specifies the facility names as they're known to syslog. Use --
facility=help to list the valid facility names.

-k, --dmesg
These display only kernel messages and are equivalent to using the
dmesg command.

-S, --since
[timestamp]

These show all journal entries since (after) the specified time. They
can be used with --until to display an arbitrary range of time. Fuzzy
times such as "yesterday" and "2 hours ago"—with quotes—are also
allowed.

-u [unit name]
The -u option allows you to select specific units to examine. You can
use a unit name or a pattern for matching. This option can be used
multiple times to match multiple units or patterns.

-U, --until
[timestamp]

These show all journal entries until (prior to) the specified time. They
can be used with --since to display an arbitrary range of time. Fuzzy
times such as "yesterday" and "2 hours ago"—with quotes—are also
allowed.

Other interesting options
The journalctl program offers some other interesting options, as well. These are useful for
refining the data search, specifying how the journal data is displayed, and managing the
journal files.

Option Description
-f, --follow This journalctl option is similar to using the tail -f command. It

shows the most recent entries in the journal that match whatever
other options have been specified and also displays new entries
as they occur. This can be useful when watching for events and

Creative Commons Attribution Share-alike 4.0 103

when testing changes.
-e, --pager-end The -e option displays the end of the data stream instead of the

beginning. This does not reverse the order of the data stream,
rather it causes the pager to jump to the end.

--file [journal filename] This names a specific journal file in /var/log/journal/<journal
subdirectory>.

-r, --reverse This option reverses the order of the journal entries in the pager
so that the newest are at the top rather than the bottom.

-n, --lines=[X] This shows the most recent X number of lines from the journal.
--utc This displays times in UTC rather than local time.
-g, --grep=[REGEX] I like the -g option because it enables me to search for specific

patterns in the journal data stream. This is just like piping a text
data stream through the grep command. This option uses Perl-
compatible regular expressions.

--disk-usage This option displays the amount of disk storage used by the
current and archived journals. It might not be as much as you
think.

--flush Journal data stored in the virtual filesystem /run/log/journal/,
which is volatile storage, is written to /var/log/journal/ which is
persistent storage. This option ensures that all data is flushed
to /run/log/journal/ at the time it returns.

--sync This writes all unwritten journal entries (still in RAM but not in
/run/log/journal) to the persistent filesystem. All journal entries
known to the journaling system at the time the command is
entered are moved to persistent storage.

--vacuum-size= --
vacuum-time= --vacuum-
files=

These can be used singly or in combination to remove the oldest
archived journal files until the specified condition is met. These
options only consider archived files, and not active files, so the
result might not be exactly what was specified.

Journal files
If you have not already, be sure to list the files in the journal directory on your host. Remember
that the name of the directory containing the journal files is a long, random number. This
directory contains multiple active and archived journal files, including some for users:

cd /var/log/journal/ad8f29ed15044f8ba0458c846300c2a4/
[root@david ad8f29ed15044f8ba0458c846300c2a4]# ll
total 352308

Creative Commons Attribution Share-alike 4.0 104

-rw-r-----+ 1 root systemd-journal 33554432 May 28 13:07
system@0c91aaef57c441859ea5e421edff6528-0000000000000001-0005a6703120d448.journal
-rw-r-----+ 1 root systemd-journal 109051904 Jun 23 21:24
system@0c91aaef57c441859ea5e421edff6528-0000000000008238-0005a6b85e4e03c6.journal
-rw-r-----+ 1 root systemd-journal 100663296 Jul 21 18:39
system@0c91aaef57c441859ea5e421edff6528-0000000000021f3e-0005a8ca55efa66a.journal
-rw-r-----+ 1 root systemd-journal 41943040 Jul 30 09:34 system.journal
-rw-r-----+ 1 root systemd-journal 8388608 May 28 13:07 user-
1000@037bcc7935234a5ea243b3af304fd08a-0000000000000c45-0005a6705ac48a3c.journal
-rw-r-----+ 1 root systemd-journal 16777216 Jun 23 21:24 user-
1000@bc90cea5294447fba2c867dfe40530db-0000000000008266-0005a6b85e910761.journal
-rw-r-----+ 1 root systemd-journal 41943040 Jul 21 16:08 user-
1000@bc90cea5294447fba2c867dfe40530db-0000000000021f4b-0005a8ca68c83ab7.journal
-rw-r-----+ 1 root systemd-journal 8388608 Jul 30 09:34 user-1000.journal
[root@david ad8f29ed15044f8ba0458c846300c2a4]#

You can see the user files in this listing for the user ID (UID) 1000, which is my Linux account.
The --files option allows me to see the content of specified files, including the user files:

journalctl --file user-1000.journal
[...]
Jul 29 14:13:32 david.both.org tumblerd[145509]: Registered thumbnailer
/usr/bin/gdk-pixbuf-thumbnailer -s %s %u %o
Jul 29 14:13:32 david.both.org Thunar[2788]: ThunarThumbnailer: got 0 handle
(Queue)
Jul 29 14:13:32 david.both.org Thunar[2788]: ThunarThumbnailer: got 0 handle
(Error or Ready)
Jul 29 14:13:32 david.both.org Thunar[2788]: ThunarThumbnailer: got 0 handle
(Finished)
Jul 29 14:15:33 david.both.org tumblerd[145552]: error: Broken zip file structure
Jul 29 14:20:34 david.both.org systemd[2466]: dbus-:1.2-
org.freedesktop.thumbnails.Thumbnailer1@11.service: Succeeded.
Jul 29 14:34:17 david.both.org systemd[2466]: Starting Cleanup of User's
Temporary Files and Directories...
Jul 29 14:34:17 david.both.org systemd[2466]: systemd-tmpfiles-clean.service:
Succeeded.
Jul 29 14:34:17 david.both.org systemd[2466]: Finished Cleanup of User's
Temporary Files and Directories.
Jul 29 14:48:26 david.both.org systemd[2466]: Started dbus-:1.2-
org.freedesktop.thumbnails.Thumbnailer1@12.service.
Jul 29 14:48:26 david.both.org tumblerd[145875]: Registered thumbnailer gsf-
office-thumbnailer -i %i -o %o -s %s
[...]

This output shows, among other things, temporary file cleanup for the UID1000 user. Data
relating to individual users may be helpful in locating the root cause of problems originating in

Creative Commons Attribution Share-alike 4.0 105

user space. I found a number of interesting entries in this output. Try it on your host and see
what you find.

Adding journal entries
It can be useful to add your own entries to the journal. This is accomplished with the
systemd-cat program that allows piping the STDOUT of a command or program to the
journal. This command can be used as part of a pipeline on the command line or in a script:

echo "Hello world" | systemd-cat -p info -t myprog
journalctl -n 10
Jul 27 09:01:01...both.org CROND[9742]: (root) CMD (run-parts /etc/cron.hourly)
Jul 27 09:01:01...both.org run-parts[...]: (/etc/cron.hourly) starting 0anacron
Jul 27 09:01:01...both.org run-parts[451]: (/etc/cron.hourly) finished 0anacron
Jul 27 09:07:53 testvm1.both.org unknown[976501]: Hello world
Jul 27 09:10:47...both.org systemd[1]: Starting system activity accounting
tool...
Jul 27 09:10:47 testvm1.both.org systemd[1]: sysstat-collect.service: Succeeded.
Jul 27 09:10:47...both.org systemd[1]: Finished system activity accounting tool.
Jul 27 09:10:47 testvm1.both.org audit[1]: SERVICE_START pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=sysstat-collect comm="systemd"
exe="/usr/lib/syst>
Jul 27 09:10:47 testvm1.both.org audit[1]: SERVICE_STOP pid=1 uid=0
auid=4294967295 ses=4294967295 msg='unit=sysstat-collect comm="systemd"
exe="/usr/lib/syste>
Jul 27 09:17:10 testvm1.both.org myprog[976516]: Hello world

The -p option specifies a priority, emerg, alert, crit, err, warning, notice, info, debug, or a value
between 0 and 7 that represents each of those named levels. These priority values are the
same as those defined by syslog(3). The default is info. The -t option is an identifier, which
can be any arbitrary short string, such as a program or script name. This string can be used for
searches by the journalctl command:

journalctl -t myprog
-- Logs begin at Mon 2020-06-08 07:47:20 EDT, end at Mon 2020-07-27 09:21:57 EDT.
--
Jul 27 09:17:10 testvm1.both.org myprog[976516]: Hello world

Journal management
I use the --disk-usage option to check on journal sizes, along with other commands
relating to disk usage, to ensure that my /var filesystem is not filling up:

journalctl --disk-usage

Creative Commons Attribution Share-alike 4.0 106

Archived and active journals take up 136.0M in the file system.

The disk usage for the journals on the testvm1 host is about 136MB. The result on my primary
workstation is 328MB, and the host I use for my firewall and router uses 2.8GB for the
journals. Journal sizes depend greatly on the host's use and daily run time. My physical hosts
all run 24x7.

The /etc/systemd/journald.conf file can be used to configure the journal file sizes,
rotation, and retention times to meet any needs not met by the default settings. You can also
configure the journal storage location—you can specify a directory on the storage device or
whether to store everything in RAM, which is volatile storage. If the journals are stored in
RAM, they will not be persistent between boots.

The default time unit in the journald.conf file is seconds, but it can be overridden using
the suffixes year, month, week, day, h, or m.

Suppose you want to limit the total amount of storage space allocated to journal files to 1GB,
store all journal entries in persistent storage, keep a maximum of 10 files, and delete any
journal archive files that are more than a month old. You can configure this in
/etc/systemd/journald.conf using:

SystemMaxUse=1G
Storage=persistent
SystemMaxFiles=10
MaxRetentionSec=1month

By default, the SystemMaxUse is 10% of available disk space. The default settings have been
fine for the systems I work with, and I have not needed to change any of them. The
journald.conf man page states that the time-based settings for specifying how long to
store journal entries in a single file or to retain older files are normally not necessary. This is
because file number and size configurations usually force rotation and deletion of old files
before any time settings might be needed.

The SystemKeepFree option ensures a specific amount of space is kept free for other data.
Many databases and application programs use the /var filesystem to store data, so ensuring
enough available storage space may be critical in systems with smaller hard drives and
minimum space allocated to /var.

If you make changes to this configuration, be sure to monitor the results carefully for an
appropriate period of time to ensure they are performing as expected.

Creative Commons Attribution Share-alike 4.0 107

Journal file rotation
The journal files are typically rotated automatically based upon the configuration in the
/etc/systemd/journald.conf file. Files are rotated whenever one of the specified
conditions is met. So if, for example, the space allocated to journal files is exceeded, the
oldest file(s) is deleted, the active file is made into an archive, and a new active file is created.

Journal files can also be rotated manually. I suggest using the --flush option to ensure
current data is moved to persistent storage before you run the command:

journalctl --rotate

There is another way to purge old journal files without performing a file rotation. The
vacuum-size=, vacuum-files=, and vacuum-time= commands can be used to delete
old archive files down to a specified total size, number of files, or prior time. The option values
consider only the archive files and not the active ones, so the resulting reduction in total file
size might be somewhat less than expected.

The following command purges old archive files so that only ones that are less than one
month old are left. You can use the s, m, h, days, months, weeks, and years suffixes:

journalctl --vacuum-time=1month

This command deletes all archive files except for the four most recent ones. If there are fewer
than four archive files, nothing will happen, and the original number of files remains:

journalctl --vacuum-files=4

This last vacuum command deletes archive files until 200MB or less of archived files are left:

journalctl --vacuum-size=200M

Only complete files are deleted. The vacuum commands do not truncate archive files to meet
the specification. They also work only on archive files, not active ones.

Final thoughts
This article looked at using the journalctl command to extract various types of data from
the systemd journal in different formats. It also explored managing journal files and how to
add entries to the log from commands and scripts.

Creative Commons Attribution Share-alike 4.0 108

The systemd journal system provides a significant amount of metadata and context for entries
compared to the old syslogd program. This additional data and the context available from the
other journal entries around the time of an incident can help the sysadmin locate and resolve
problems much faster than having to search multiple syslog files.

In my opinion, the journalctl command meets the Unix philosophy that programs should
do one thing and do it well. The only thing journalctl does is extract data from the journal
and provide many options for selecting and formatting that data. At about 85K, it is not very
big. Of course, that does not include shared libraries, but those are, by definition, shared with
other programs.

You should now have enough information to use the systemd journal more effectively. If you
would like to know more than what I covered here, look in the man pages for journalctl and
systemd-cat.

Creative Commons Attribution Share-alike 4.0 109

Resolve systemd-resolved name-
service failures with Ansible

Most people tend to take name services for granted. They are necessary to convert human-
readable names, such as www.example.com, into IP addresses, like 93.184.216.34. It is
easier for humans to recognize and remember names than IP addresses, and name services
allow us to use names, and they also convert them to IP addresses for us.

The Domain Name System (DNS) is the global distributed database that maintains the data
required to perform these lookups and reverse lookups, in which the IP address is known and
the domain name is needed.

I installed Fedora 33 the first day it became available in October 2020. One of the major
changes was a migration from the ancient Name Service Switch (NSS) resolver to systemd-
resolved. Unfortunately, after everything was up and running, I couldn't connect to or even
ping any of the hosts on my network by name, although using IP addresses did work.

The problem
I run my own name server using BIND on my network server, and all has been good for over 20
years. I've configured my DHCP server to provide the IP address of my name server to every
workstation connected to my network, and that (along with a couple of backup name servers)
is stored in /etc/resolv.conf.

Michael Catanzaro describes how systemd-resolved is supposed to work, but the introduction
of systemd-resolved caused various strange resolution problems on my network hosts. The
symptoms varied depending upon the host's purpose. The trouble mostly presented as an
inability to find IP addresses for hosts inside the network on most systems. On other systems,
it failed to resolve any names at all. For example, even though nslookup sometimes returned
the correct IP addresses for hosts inside and outside networks, ping would not contact the

Creative Commons Attribution Share-alike 4.0 110

https://blogs.gnome.org/mcatanzaro/2020/12/17/understanding-systemd-resolved-split-dns-and-vpn-configuration/
https://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html
https://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html
https://opensource.com/article/20/11/new-gnome
https://opensource.com/article/17/4/introduction-domain-name-system-dns

designated host, nor could I SSH to that same host. Most of the time, neither the lookup, the
ping, nor SSH would work unless I used the IP address in the command.

The new resolver allegedly has four operational modes, described in this Fedora Magazine
article. None of the options seems to work correctly when the network has its own name
server designed to perform lookups for internal and external hosts.

In theory, systemd-resolved is supposed to fix some corner issues around the NSS resolver
failing to use the correct name server when a host is connected to a VPN, which has become
a common problem with so many more people working from home.

The new resolver is supposed to use the fact that /etc/resolv.conf is now a symlink to
determine how it is supposed to work based on which resolve file it is linked to. systemd-
resolved's man page includes details about this behavior. The man page says that setting
/etc/resolv.conf as a symlink to /run/systemd/resolve/resolv.conf should
cause the new resolver to work the same way the old one does, but that didn't work for me.

My fix
I have seen many options on the internet for resolving this problem, but the only thing that
works reliably for me is to stop and disable the new resolver. First, I deleted the existing link
for resolv.conf, copied my preferred resolv.conf file to
/run/NetworkManager/resolv.conf, and added a new link to that file in /etc:

rm -f /etc/resolv.conf
ln -s /run/NetworkManager/resolv.conf /etc/resolv.conf

These commands stop and disable the systemd-resolved service:

systemctl stop systemd-resolved.service ; systemctl disable systemd-
resolved.service
Removed /etc/systemd/system/multi-user.target.wants/systemd-resolved.service.
Removed /etc/systemd/system/dbus-org.freedesktop.resolve1.service.

There's no reboot required. The old resolver takes over, and name services work as expected.

Make it easy with Ansible
I set up this Ansible playbook to make the necessary changes if I install a new host or an
update that reverts the resolver to systemd-resolved, or if an upgrade to the next release of

Creative Commons Attribution Share-alike 4.0 111

https://fedoramagazine.org/systemd-resolved-introduction-to-split-dns/
https://fedoramagazine.org/systemd-resolved-introduction-to-split-dns/

Fedora reverts the resolver. The resolv.conf file you want for your network should be
located in /root/ansible/resolver/files/:

fixResolver.yml
This playbook configures the old nss resolver on systems that have the new
systemd-resolved service installed. It copies the resolv.conf file for my
network to /run/NetworkManager/resolv.conf and places a link to that file
as /etc/resolv.conf. It then stops and disables systemd-resolved which
activates the old nss resolver.
##

- name: Revert to old NSS resolver and disable the systemd-resolved service
 hosts: all_by_IP
##

 tasks:
 - name: Copy resolv.conf for my network
 copy:
 src: /root/ansible/resolver/files/resolv.conf
 dest: /run/NetworkManager/resolv.conf
 mode: 0644
 owner: root
 group: root

 - name: Delete existing /etc/resolv.conf file or link
 file:
 path: /etc/resolv.conf
 state: absent

 - name: Create link from /etc/resolv.conf to /run/NetworkManager/resolv.conf
 file:
 src: /run/NetworkManager/resolv.conf
 dest: /etc/resolv.conf
 state: link

 - name: Stop and disable systemd-resolved
 systemd:
 name: systemd-resolved
 state: stopped
 enabled: no

Whichever Ansible inventory you use must have a group that uses IP addresses instead of
hostnames. This command runs the playbook and specifies the name of the inventory file I
use for hosts by IP address:

ansible-playbook -i /etc/ansible/hosts_by_IP fixResolver.yml

Creative Commons Attribution Share-alike 4.0 112

Final thoughts
Sometimes the best answer to a tech problem is to fall back to what you know. When
systemd-resolved is more robust, I'll likely give it another try, but for now I'm glad that open
source infrastructure allows me to quickly identify and resolve network problems. Using
Ansible to automate the process is a much appreciated bonus. The important lesson here is to
do your research when troubleshooting, and to never be afraid to void your warranty.

Creative Commons Attribution Share-alike 4.0 113

Analyze Linux startup
performance

Part of the system administrator's job is to analyze the performance of systems and to find
and resolve problems that cause poor performance and long startup times. Sysadmins also
need to check other aspects of systemd configuration and usage.

The systemd init system provides the systemd-analyze tool that can help uncover
performance problems and other important systemd information. In a previous chapter, I used
systemd-analyze to analyze timestamps and timespans in systemd timers, but this tool has
many other uses, some of which I explore in this article.

Startup overview
The Linux startup sequence is a good place to begin exploring because many systemd-
analyze tool functions are targeted at startup. But first, it is important to understand the
difference between boot and startup. The boot sequence starts with the BIOS power-on self
test (POST) and ends when the kernel is finished loading and takes control of the host
system, which is the beginning of startup and the point when the systemd journal begins.

Earlier in this book, I discussed startup in more detail with respect to what happens and in
what sequence. In this article, I want to examine the startup sequence to look at the amount
of time it takes to go through startup and which tasks take the most time.

The results I'll show below are from my primary workstation, which is much more interesting
than a virtual machine's results. This workstation consists of an ASUS TUF X299 Mark 2
motherboard, an Intel i9-7960X CPU with 16 cores and 32 CPUs (threads), and 64GB of
RAM. Some of the commands below can be run by a non-root user, but I will use root in this
article to prevent having to switch between users.

Creative Commons Attribution Share-alike 4.0 114

There are several options for examining the startup sequence. The simplest form of the
systemd-analyze command displays an overview of the amount of time spent in each of
the main sections of startup, the kernel startup, loading and running initrd (i.e., initial
ramdisk, a temporary system image that is used to initialize some hardware and mount the /
[root] filesystem), and userspace (where all the programs and daemons required to bring the
host up to a usable state are loaded). If no subcommand is passed to the command,
systemd-analyze time is implied:

systemd-analyze
Startup finished in 53.921s (firmware) + 2.643s (loader) + 2.236s (kernel) +
4.348s (initrd) + 10.082s (userspace) = 1min 13.233s
graphical.target reached after 10.071s in userspace

The most notable data in this output is the amount of time spent in firmware (BIOS): almost
54 seconds. This is an extraordinary amount of time, and none of my other physical systems
take anywhere near as long to get through BIOS.

My System76 Oryx Pro laptop spends only 8.506 seconds in BIOS, and all of my home-built
systems take a bit less than 10 seconds. After some online searches, I found that this
motherboard is known for its inordinately long BIOS boot time. My motherboard never "just
boots." It always hangs, and I need to do a power off/on cycle, and then BIOS starts with an
error, and I need to press F1 to enter BIOS configuration, from where I can select the boot
drive and finish the boot. This is where the extra time comes from.

Not all hosts show firmware data. My unscientific experiments lead me to believe that this
data is shown only for Intel generation 9 processors or above. But that could be incorrect.

This overview of the boot startup process is interesting and provides good (though limited)
information, but there is much more information available about startup, as I'll describe below.

Assigning blame
You can use systemd-analyze blame to discover which systemd units take the most time
to initialize. The results are displayed in order by the amount of time they take to initialize,
from most to least:

systemd-analyze blame
 5.417s NetworkManager-wait-online.service
 3.423s dracut-initqueue.service
 2.715s systemd-udev-settle.service
 2.519s fstrim.service
 1.275s udisks2.service

Creative Commons Attribution Share-alike 4.0 115

 1.271s smartd.service
 996ms upower.service
 637ms lvm2-monitor.service
 533ms lvm2-pvscan@8:17.service
 520ms dmraid-activation.service
 460ms vboxdrv.service
 396ms initrd-switch-root.service
[...] # I removed lots of entries with increasingly small times

Because many of these services start in parallel, the numbers may add up to significantly
more than the total given by systemd-analyze time for everything after the BIOS. All of
these are small numbers, so I cannot find any significant savings here.

The data from this command can provide indications about which services you might consider
to improve boot times. Services that are not used can be disabled. There does not appear to
be any single service that is taking an excessively long time during this startup sequence. You
may see different results for each boot and startup.

Critical chains
Like the critical path in project management, a critical chain shows the time-critical chain of
events that take place during startup. These are the systemd units you want to look at if
startup is slow, as they are the ones that would cause delays. This tool does not display all the
units that start, only those in this critical chain of events:

systemd-analyze critical-chain
The time when unit became active or started is printed after the "@" character.
The time the unit took to start is printed after the "+" character.

graphical.target @10.071s
└─lxdm.service @10.071s
 └─plymouth-quit.service @10.047s +22ms
 └─systemd-user-sessions.service @10.031s +7ms
 └─remote-fs.target @10.026s
 └─remote-fs-pre.target @10.025s
 └─nfs-client.target @4.636s
 └─gssproxy.service @4.607s +28ms
 └─network.target @4.604s
 └─NetworkManager.service @4.383s +219ms
 └─dbus-broker.service @4.434s +136ms
 └─dbus.socket @4.369s
 └─sysinit.target @4.354s
 └─systemd-update-utmp.service @4.345s +9ms
 └─auditd.service @4.301s +42ms
 └─systemd-tmpfiles-setup.service @4.254s +42ms

Creative Commons Attribution Share-alike 4.0 116

 └─import-state.service @4.233s +19ms
 └─local-fs.target @4.229s
 └─Virtual.mount @4.019s +209ms
 └─systemd-fsck@dev-mapper-vg_david2\
x2dVirtual.service @3.742s +274ms
 └─local-fs-pre.target @3.726s
 └─lvm2-monitor.service @356ms +637ms
 └─dm-event.socket @319ms
 └─-.mount
 └─system.slice
 └─-.slice

The numbers preceded with @ show the absolute number of seconds since startup began
when the unit becomes active. The numbers preceded by + show the amount of time it takes
for the unit to start.

System state
Sometimes you need to determine the system's current state. The systemd-analyze dump
command dumps a massive amount of data about the current system state. It starts with a list
of the primary boot timestamps, a list of each systemd unit, and a complete description of the
state of each:

systemd-analyze dump
Timestamp firmware: 1min 7.983523s
Timestamp loader: 3.872325s
Timestamp kernel: Wed 2020-08-26 12:33:35 EDT
Timestamp initrd: Wed 2020-08-26 12:33:38 EDT
Timestamp userspace: Wed 2020-08-26 12:33:42 EDT
Timestamp finish: Wed 2020-08-26 16:33:56 EDT
Timestamp security-start: Wed 2020-08-26 12:33:42 EDT
Timestamp security-finish: Wed 2020-08-26 12:33:42 EDT
Timestamp generators-start: Wed 2020-08-26 16:33:42 EDT
Timestamp generators-finish: Wed 2020-08-26 16:33:43 EDT
Timestamp units-load-start: Wed 2020-08-26 16:33:43 EDT
Timestamp units-load-finish: Wed 2020-08-26 16:33:43 EDT
Timestamp initrd-security-start: Wed 2020-08-26 12:33:38 EDT
Timestamp initrd-security-finish: Wed 2020-08-26 12:33:38 EDT
Timestamp initrd-generators-start: Wed 2020-08-26 12:33:38 EDT
Timestamp initrd-generators-finish: Wed 2020-08-26 12:33:38 EDT
Timestamp initrd-units-load-start: Wed 2020-08-26 12:33:38 EDT
Timestamp initrd-units-load-finish: Wed 2020-08-26 12:33:38 EDT
-> Unit system.slice:
 Description: System Slice
 Instance: n/a
 Unit Load State: loaded

Creative Commons Attribution Share-alike 4.0 117

 Unit Active State: active
 State Change Timestamp: Wed 2020-08-26 12:33:38 EDT
 Inactive Exit Timestamp: Wed 2020-08-26 12:33:38 EDT
 Active Enter Timestamp: Wed 2020-08-26 12:33:38 EDT
 Active Exit Timestamp: n/a
 Inactive Enter Timestamp: n/a
 May GC: no
[...] # I've deleted a bazillion lines of output

On my main workstation, this command generated a stream of 49,680 lines and about
1.66MB. This command is very fast, so you don't need to wait for the results.

I do like the wealth of detail provided for the various connected devices, such as storage. Each
systemd unit has a section with details such as modes for various runtimes, cache, and log
directories, the command line used to start the unit, the process ID (PID), the start
timestamp, as well as memory and file limits.

The man page for systemd-analyze shows the systemd-analyze --user dump
option, which is intended to display information about the internal state of the user manager.
This fails for me, and internet searches indicate that there may be a problem with it. In
systemd, --user instances are used to manage and control the resources for the hierarchy of
processes belonging to each user. The processes for each user are part of a control group,
which I'll cover in a future article.

Analytic graphs
Most pointy-haired-bosses (PHBs) and many good managers find pretty graphs easier to
read and understand than the text-based system performance data I usually prefer.
Sometimes, though, even I like a good graph, and systemd-analyze provides the capability
to display startup data in an SVG vector graphics chart.

The following command generates a vector graphics file that displays the events that take
place during boot and startup. It only takes a few seconds to generate this file:

systemd-analyze plot > /tmp/bootup.svg

This command creates an SVG, which is a text file that defines a series of graphic vectors that
applications, including Image Viewer, Ristretto, Okular, Eye of Mate, LibreOffice Draw, and
others, use to generate a graph. These applications process SVG files to create an image.

Creative Commons Attribution Share-alike 4.0 118

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

I used LibreOffice Draw to render a graph. The graph is huge, and you need to zoom in
considerably to make out any detail. Here is a small portion of it:

The bootup sequence is to the left of the zero (0) on the timeline in the graph, and the
startup sequence is to the right of zero. This small portion shows the kernel, initrd, and the
processes initrd started.

This graph shows at a glance what started when, how long it took to start up, and the major
dependencies. The critical path is highlighted in red.

Another command that generates graphical output is systemd-analyze dot. It generates
textual dependency graph descriptions in DOT format. The resulting data stream is then
piped through the dot utility, which is part of a family of programs that can be used to
generate vector graphic files from various types of data. These SVG files can also be
processed by the tools listed above.

First, generate the file. This took almost nine minutes on my primary workstation:

time systemd-analyze dot | dot -Tsvg > /tmp/test.svg
 Color legend: black = Requires

Creative Commons Attribution Share-alike 4.0 119

https://en.wikipedia.org/wiki/DOT_(graph_description_language)

 dark blue = Requisite
 dark grey = Wants
 red = Conflicts
 green = After

real 8m37.544s
user 8m35.375s
sys 0m0.070s

I won't reproduce the output here because the resulting graph is pretty much spaghetti. But
you should try it and view the result to see what I mean.

Conditionals
One of the more interesting, yet somewhat generic, capabilities I discovered while reading the
systemd-analyze(1) man page is the condition subcommand. (Yes—I do read the man
pages, and it is amazing what I have learned this way!) This condition subcommand can be
used to test the conditions and asserts that can be used in systemd unit files.

It can also be used in scripts to evaluate one or more conditions—it returns a zero (0) if all are
met or a one (1) if any condition is not met. In either case, it also spews text about its findings.

The example below, from the man page, is a bit complex. It tests for a kernel version between
4.0 and 5.1, that the host is running on AC power, that the system architecture is anything but
ARM, and that the directory /etc/os-release exists. I added the echo $? statement to
print the return code.

systemd-analyze condition 'ConditionKernelVersion = ! <4.0' \
 'ConditionKernelVersion = >=5.1' \
 'ConditionACPower=|false' \
 'ConditionArchitecture=|!arm' \
 'AssertPathExists=/etc/os-release' ; \
echo $?
test.service: AssertPathExists=/etc/os-release succeeded.
Asserts succeeded.
test.service: ConditionArchitecture=|!arm succeeded.
test.service: ConditionACPower=|false failed.
test.service: ConditionKernelVersion=>=5.1 succeeded.
test.service: ConditionKernelVersion=!<4.0 succeeded.
Conditions succeeded.
0

The list of conditions and asserts starts around line 600 on the systemd.unit(5) man
page.

Creative Commons Attribution Share-alike 4.0 120

Listing configuration files
The systemd-analyze tool provides a way to send the contents of various configuration
files to STDOUT, as shown here. The base directory is /etc/:

systemd-analyze cat-config systemd/system/display-manager.service
/etc/systemd/system/display-manager.service
[Unit]
Description=LXDM (Lightweight X11 Display Manager)
#Documentation=man:lxdm(8)
Conflicts=getty@tty1.service
After=systemd-user-sessions.service getty@tty1.service plymouth-quit.service
livesys-late.service
#Conflicts=plymouth-quit.service

[Service]
ExecStart=/usr/sbin/lxdm
Restart=always
IgnoreSIGPIPE=no
#BusName=org.freedesktop.lxdm

[Install]
Alias=display-manager.service

This is a lot of typing to do nothing more than a standard cat command does. I find the next
command a tiny bit helpful. It can search out files with the specified pattern within the
standard systemd locations:

systemctl cat backup*
/etc/systemd/system/backup.timer
This timer unit runs the local backup program
(C) David Both
Licensed under GPL V2
#

[Unit]
Description=Perform system backups
Requires=backup.service

[Timer]
Unit=backup.service
OnCalendar=*-*-* 00:15:30

[Install]
WantedBy=timers.target

/etc/systemd/system/backup.service

Creative Commons Attribution Share-alike 4.0 121

This service unit runs the rsbu backup program
By David Both
Licensed under GPL V2
#

[Unit]
Description=Backup services using rsbu
Wants=backup.timer

[Service]
Type=oneshot
Environment="HOME=/root"
ExecStart=/usr/local/bin/rsbu -bvd1
ExecStart=/usr/local/bin/rsbu -buvd2

[Install]
WantedBy=multi-user.target

Both of these commands preface the contents of each file with a comment line containing the
file's full path and name.

Unit file verification
After creating a new unit file, it can be helpful to verify that its syntax is correct. This is what
the verify subcommand does. It can list directives that are spelled incorrectly and call out
missing service units:

systemd-analyze verify /etc/systemd/system/backup.service

Adhering to the Unix/Linux philosophy that "silence is golden," a lack of output messages
means that there are no errors in the scanned file.

Security
The security subcommand checks the security level of specified services. It only works on
service units and not on other types of unit files:

systemd-analyze security display-manager
 NAME DESCRIPTION
>
 PrivateNetwork= Service has access ✗
to the host's network >
 User=/DynamicUser= Service runs as ✗
root user >

Creative Commons Attribution Share-alike 4.0 122

 CapabilityBoundingSet=~CAP_SET(UID|GID|PCAP) Service may change ✗
UID/GID identities/capabilities >
 CapabilityBoundingSet=~CAP_SYS_ADMIN Service has ✗
administrator privileges >
 CapabilityBoundingSet=~CAP_SYS_PTRACE Service has ✗
ptrace() debugging abilities >
 RestrictAddressFamilies=~AF_(INET|INET6) Service may ✗
allocate Internet sockets >
 RestrictNamespaces=~CLONE_NEWUSER Service may create ✗
user namespaces >
 RestrictAddressFamilies=~… Service may ✗
allocate exotic sockets >
[...]
 CapabilityBoundingSet=~CAP_SYS_TTY_CONFIG Service may issue ✗
vhangup() >
 CapabilityBoundingSet=~CAP_WAKE_ALARM Service may program✗
timers that wake up the system >
 RestrictAddressFamilies=~AF_UNIX Service may ✗
allocate local sockets >

→ Overall exposure level for backup.service: 9.6 UNSAFE ?
lines 34-81/81 (END)

Of course, many services need pretty much complete access to everything in order to do their
work. I ran this program against several services, including my own backup service; the results
may differ, but the bottom line seems to be mostly the same.

This tool would be very useful for checking and fixing userspace service units in security-
critical environments. I don't think it has much to offer for most of us.

Final thoughts
This powerful tool offers some interesting and amazingly useful options. Much of what this
article explores is about using systemd-analyze to provide insights into Linux's startup
performance using systemd. It can also analyze other aspects of systemd.

Some of these tools are of limited use, and a couple should be forgotten completely. But most
can be used to good effect when resolving problems with startup and other systemd
functions.

Creative Commons Attribution Share-alike 4.0 123

Managing resources with cgroups
in systemd

There is little more frustrating to me as a sysadmin than unexpectedly running out of a
computing resource. On more than one occasion, I have filled all available disk space in a
partition, run out of RAM, and not had enough CPU time to perform my tasks in a reasonable
amount of time. Resource management is one of the most important tasks that sysadmins do.

The point of resource management is to ensure that all processes have relatively equal access
to the system resources they need. Resource management also involves ensuring that RAM,
hard drive space, and CPU capacity are added when necessary or rationed when that is not
possible. In addition, users who hog system resources, whether intentionally or accidentally,
should be prevented from doing so.

There are tools that enable sysadmins to monitor and manage various system resources. For
example, top and similar tools allow you to monitor the use of memory, I/O, storage (disk,
SSD, and so on), network, swap space, CPU usage, and more. These tools, particularly those
that are CPU-centric, are mostly based on the paradigm that the running process is the unit
of control. At best, they provide a way to adjust the nice number–and through that, the
priority—or to kill a running process. (For information about nice numbers, see Monitoring
Linux and Windows hosts with Glances.)

Other tools based on traditional resource management in a SystemV environment are
managed by the /etc/security/limits.conf file and the local configuration files
located in the /etc/security/limits.d directory. Resources can be limited in a fairly
crude but useful manner by user or group. Resources that can be managed include various
aspects of RAM, total CPU time per day, total amount of data, priority, nice number, number
of concurrent logins, number of processes, maximum file size, and more.

Creative Commons Attribution Share-alike 4.0 124

https://opensource.com/article/19/11/monitoring-linux-glances
https://opensource.com/article/19/11/monitoring-linux-glances
https://en.wikipedia.org/wiki/Top_(software)

Using cgroups for process management
One major difference between systemd and SystemV is how they handle processes. SystemV
treats each process as an entity unto itself. systemd collects related processes into control
groups, called cgroups (short for control groups), and manages system resources for the
cgroup as a whole. This means resources can be managed per application rather than by the
individual processes that make up an application.

The control units for cgroups are called slice units. Slices are a conceptualization that allows
systemd to order processes in a tree format for ease of management.

Viewing cgroups
I'll start with some commands that allow you to view various types of information about
cgroups. The systemctl status <service> command displays slice information about a
specified service, including its slice. This example shows the at daemon:

systemctl status atd.service
● atd.service - Deferred execution scheduler
 Loaded: loaded (/usr/lib/systemd/system/atd.service; enabled; vendor preset:
enabled)
 Active: active (running) since Wed 2020-09-23 12:18:24 EDT; 1 day 3h ago
 Docs: man:atd(8)
 Main PID: 1010 (atd)
 Tasks: 1 (limit: 14760)
 Memory: 440.0K
 CPU: 5ms
 CGroup: /system.slice/atd.service
 └─1010 /usr/sbin/atd -f

Sep 23 12:18:24 testvm1.both.org systemd[1]: Started Deferred execution
scheduler.

This is an excellent example of one reason that I find systemd more usable than SystemV and
the old init program. There is so much more information here than SystemV could provide.
The cgroup entry includes the hierarchical structure where the system.slice is systemd
(PID 1), and the atd.service is one level below and part of the system.slice. The
second line of the cgroup entry also shows the process ID (PID) and the command used to
start the daemon.

Creative Commons Attribution Share-alike 4.0 125

https://en.wikipedia.org/wiki/Cgroups
https://opensource.com/article/20/4/systemd

The systemctl command shows multiple cgroup entries. The --all option shows all slices,
including those that are not currently active:

systemctl -t slice --all
 UNIT LOAD ACTIVE SUB DESCRIPTION
 -.slice loaded active active Root Slice
 system-getty.slice loaded active active system-getty.slice
 system-lvm2\x2dpvscan.slice loaded active active system-lvm2\
x2dpvscan.slice
 system-modprobe.slice loaded active active system-modprobe.slice
 system-sshd\x2dkeygen.slice loaded active active system-sshd\
x2dkeygen.slice
 system-systemd\x2dcoredump.slice loaded inactive dead system-systemd\
x2dcoredump.slice
 system-systemd\x2dfsck.slice loaded active active system-systemd\
x2dfsck.slice
 system.slice loaded active active System Slice
 user-0.slice loaded active active User Slice of UID 0
 user-1000.slice loaded active active User Slice of UID 1000
 user.slice loaded active active User and Session Slice

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

11 loaded units listed.
To show all installed unit files use 'systemctl list-unit-files'.

The first thing to notice about this data is that it shows user slices for UIDs 0 (root) and 1000,
which is my user login. This shows only the slices and not the services that are part of each
slice. This data shows that a slice is created for each user at the time they log in. This can
provide a way to manage all of a user's tasks as a single cgroup entity.

Explore the cgroup hierarchy
All is well and good so far, but cgroups are hierarchical, and all of the service units run as
members of one of the cgroups. Viewing that hierarchy is easy and uses one old command
and one new one that is part of systemd.

The ps command can be used to map the processes and their locations in the cgroup
hierarchy. Note that it is necessary to specify the desired data columns when using the ps
command. I significantly reduced the volume of output from this command below, but I tried
to leave enough so you can get a feel for what you might find on your systems:

Creative Commons Attribution Share-alike 4.0 126

ps xawf -eo pid,user,cgroup,args
 PID USER CGROUP COMMAND
 2 root - [kthreadd]
 3 root - _ [rcu_gp]
 4 root - _ [rcu_par_gp]
 6 root - _ [kworker/0:0H-kblockd]
 9 root - _ [mm_percpu_wq]
 10 root - _ [ksoftirqd/0]
 11 root - _ [rcu_sched]
 12 root - _ [migration/0]
 13 root - _ [cpuhp/0]
 14 root - _ [cpuhp/1]
<SNIP>
 625406 root - _ [kworker/3:0-ata_sff]
 625409 root - _ [kworker/u8:0-events_unbound]
 1 root 0::/init.scope /usr/lib/systemd/systemd --switched-
root --system --deserialize 30
 588 root 0::/system.slice/systemd-jo /usr/lib/systemd/systemd-journald
 599 root 0::/system.slice/systemd-ud /usr/lib/systemd/systemd-udevd
 741 root 0::/system.slice/auditd.ser /sbin/auditd
 743 root 0::/system.slice/auditd.ser _ /usr/sbin/sedispatch
 764 root 0::/system.slice/ModemManag /usr/sbin/ModemManager
 765 root 0::/system.slice/NetworkMan /usr/sbin/NetworkManager --no-daemon
 767 root 0::/system.slice/irqbalance /usr/sbin/irqbalance --foreground
 779 root 0::/system.slice/mcelog.ser /usr/sbin/mcelog --ignorenodev --
daemon --foreground
 781 root 0::/system.slice/rngd.servi /sbin/rngd -f
 782 root 0::/system.slice/rsyslog.se /usr/sbin/rsyslogd -n
<SNIP>
 893 root 0::/system.slice/sshd.servi sshd: /usr/sbin/sshd -D [listener] 0
of 10-100 startups
 1130 root 0::/user.slice/user-0.slice _ sshd: root [priv]
 1147 root 0::/user.slice/user-0.slice | _ sshd: root@pts/0
 1148 root 0::/user.slice/user-0.slice | _ -bash
 1321 root 0::/user.slice/user-0.slice | _ screen
 1322 root 0::/user.slice/user-0.slice | _ SCREEN
 1323 root 0::/user.slice/user-0.slice | _ /bin/bash
 498801 root 0::/user.slice/user-0.slice | | _ man
systemd.resource-control
[...]

You can view the entire hierarchy with the systemd-cgls command, which is a bit simpler
because it does not require any complex options.

I have shortened this tree view considerably. as well, but I left enough to give you some idea of
the amount of data as well as the types of entries you should see when you do this on your
system. I did this on one of my virtual machines, and it is about 200 lines long; the amount of
data from my primary workstation is about 250 lines:

Creative Commons Attribution Share-alike 4.0 127

systemd-cgls
Control group /:
-.slice
├─user.slice
│ ├─user-0.slice
│ │ ├─session-1.scope
│ │ │ ├─ 1130 sshd: root [priv]
│ │ │ ├─ 1147 sshd: root@pts/0
│ │ │ ├─ 1148 -bash
│ │ │ ├─ 1321 screen
│ │ │ ├─ 1322 SCREEN
│ │ │ ├─ 1323 /bin/bash
│ │ │ ├─ 1351 /bin/bash
│ │ │ ├─ 1380 /bin/bash
│ │ │ ├─123293 man systemd.slice
│ │ │ ├─123305 less
│ │ │ ├─246795 /bin/bash
│ │ │ ├─371371 man systemd-cgls
│ │ │ ├─371383 less
│ │ │ ├─371469 systemd-cgls
│ │ │ └─371470 less
│ │ └─user@0.service …
│ │ ├─dbus-broker.service
│ │ │ ├─1170 /usr/bin/dbus-broker-launch --scope user
│ │ │ └─1171 dbus-broker --log 4 --controller 12 --machine-id
3bccd1140fca488187f8a1439c832f07 --max-bytes 100000000000000 --max-fds
25000000000000 --max->
│ │ ├─gvfs-daemon.service
│ │ │ └─1173 /usr/libexec/gvfsd
│ │ └─init.scope
│ │ ├─1137 /usr/lib/systemd/systemd --user
│ │ └─1138 (sd-pam)
│ └─user-1000.slice
│ ├─user@1000.service …
│ │ ├─dbus\x2d:1.2\x2dorg.xfce.Xfconf.slice
│ │ │ └─dbus-:1.2-org.xfce.Xfconf@0.service
│ │ │ └─370748 /usr/lib64/xfce4/xfconf/xfconfd
[...]

This tree view shows all of the user and system slices and the services and programs running
in each cgroup. Notice the units called "scopes," which group related programs into a
management unit, within the user-1000.slice in the listing above. The user-
1000.slice/session-7.scope cgroup contains the GUI desktop program hierarchy,
starting with the LXDM display manager session and all of its subtasks, including things like
the Bash shell and the Thunar GUI file manager.

Creative Commons Attribution Share-alike 4.0 128

Scope units are not defined in configuration files but are generated programmatically as the
result of starting groups of related programs. Scope units do not create or start the processes
running as part of that cgroup. All processes within the scope are equal, and there is no
internal hierarchy. The life of a scope begins when the first process is created and ends when
the last process is destroyed.

Open several windows on your desktop, such as terminal emulators, LibreOffice, or whatever
you want, then switch to an available virtual console and start something like top or Midnight
Commander. Run the systemd-cgls command on your host, and take note of the overall
hierarchy and the scope units.

The systemd-cgls command provides a more complete representation of the cgroup
hierarchy (and details of the units that make it up) than any other command I have found. I
prefer its cleaner representation of the tree than what the ps command provides.

More information
After covering these basics, I had planned to go into more detail about cgroups and how to
use them, but I discovered a series of four excellent articles by Red Hat's Steve Ovens on
Opensource.com's sister site Enable Sysadmin. Rather then basically rewriting Steve's articles,
I decided it would be much better to take advantage of his cgroup expertise by linking to
them:

1. A Linux sysadmin's introduction to cgroups
2. How to manage cgroups with CPUShares
3. Managing cgroups the hard way—manually
4. Managing cgroups with systemd

Enjoy and learn from them, as I did.

Creative Commons Attribution Share-alike 4.0 129

https://www.redhat.com/sysadmin/cgroups-part-four
https://www.redhat.com/sysadmin/cgroups-part-three
https://www.redhat.com/sysadmin/cgroups-part-two
https://www.redhat.com/sysadmin/cgroups-part-one
https://www.redhat.com/sysadmin/
https://www.redhat.com/sysadmin/users/steve-ovens
https://midnight-commander.org/
https://midnight-commander.org/

	by David Both
	We are Opensource.com
	David Both
	Learning to love systemd
	Linux boot
	systemd controversy
	Why I prefer SystemV
	Why I prefer systemd
	The real issue
	Replacing SystemV

	systemd tasks
	Architecture
	systemd as PID 1
	Final thoughts
	Resources

	Understanding systemd at startup
	Exploring Linux startup with systemd
	Targets
	Exploring the current target
	Switching to a different target
	Changing the default target
	Using the systemctl command to manage systemd units
	Preparation
	systemd suite
	Practical structure
	systemctl
	Service units
	Mounts the old way
	Creating a mount unit
	In summary

	Start using systemd as a troubleshooting tool
	Determining the problem
	First solution
	The better solution
	Next steps

	Manage startup using systemd
	Preparation
	The program
	The service unit file
	Start the service
	Reboot—finally
	Changing the sequence
	Ensure a service starts after the network is running
	The best way to define the start sequence

	Control your computer time and date with systemd
	Why time is important to computers
	Multiple times
	What about NTP?
	NTP implementation options
	Disable other NTP services
	Check the status before starting
	Set the time zone
	systemd-timesyncd
	Configure systemd-timesyncd
	Start timesync
	Set the hardware clock
	Do you really need RTC?
	Summary

	Use systemd timers instead of cronjobs
	System maintenance timers
	Create a timer
	Timer types
	Calendar event specifications
	Test calendar specifications
	Summary

	systemd calendar and timespans
	Definitions
	Calendar event expressions
	Timestamps
	Timespans
	Final thoughts

	Using systemd journals to troubleshoot transient problems
	About journals
	About the systemd journal
	Configuration changes
	Controversies about the data format
	About journalctl
	journalctl time and date formats
	Narrowing the search
	Options to narrow searches of the journal
	Other interesting options
	Journal files
	Adding journal entries
	Journal management
	Journal file rotation
	Final thoughts

	Resolve systemd-resolved name-service failures with Ansible
	The problem
	My fix
	Make it easy with Ansible
	Final thoughts

	Analyze Linux startup performance
	Startup overview
	Assigning blame
	Critical chains
	System state
	Analytic graphs
	Conditionals
	Listing configuration files
	Unit file verification
	Security
	Final thoughts

	Managing resources with cgroups in systemd
	Using cgroups for process management
	Viewing cgroups
	Explore the cgroup hierarchy
	More information

