
Learn JavaScript
Opensource.com

We are Opensource.com

Opensource.com is a community website publishing stories about creating, adopting, and
sharing open source solutions. Visit Opensource.com to learn more about how the open
source way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Do you have an open source story to tell? Submit a story idea at opensource.com/story

Email us at open@opensource.com

http://opensource.com/story
mailto://open@opensource.com
https://www.redhat.com?sc_cid=7013a000003BkHQAA0

Table of Contents
Learn JavaScript by writing a guessing game..3
Write your first JavaScript code..12
Create a JavaScript API in 6 minutes...18
How much JavaScript do you need to know before learning ReactJS?.......................................24
Code your first React UI app...27
4 steps to set up global modals in React..33
How I build command-line apps in JavaScript...40
165+ JavaScript terms you need to know...43

Learn JavaScript by writing a
guessing game

By Mandy Kendall

It's pretty safe to say that most of the modern web would not exist without JavaScript. It's
one of the three standard web technologies (along with HTML and CSS) and allows anyone
to create much of the interactive, dynamic content we have come to expect in our
experiences with the World Wide Web. From frameworks like React to data visualization
libraries like D3, it's hard to imagine the web without it.

There's a lot to learn, and a great way to begin learning this popular language is by writing a
simple application to become familiar with some concepts. Recently, some Opensource.com
correspondents have written about how to learn their favorite language by writing a simple
guessing game, so that's a great place to start!

Getting started
JavaScript comes in many flavors, but I'll start with the basic version, commonly called "Vanilla
JavaScript." JavaScript is primarily a client-side scripting language, so it can run in any
standard browser without installing anything. All you need is a code editor (Brackets is a great
one to try) and the web browser of your choice.

HTML user interface
JavaScript runs in a web browser and interacts with the other standard web technologies,
HTML and CSS. To create this game, you'll first use HTML (Hypertext Markup Language) to
create a simple interface for your players to use. In case you aren't familiar, HTML is a markup
language used to provide structure to content on the web.

Creative Commons Attribution Share-alike 4.0 3

https://opensource.com/article/20/12/brackets
https://opensource.com/article/18/9/open-source-javascript-chart-libraries
https://opensource.com/article/20/11/reactjs-tutorial
https://opensource.com/tags/javascript

To start, create an HTML file for your code. The file should have the .html extension to let
the browser know that it is an HTML document. You can call your file guessingGame.html.

Use a few basic HTML tags in this file to display the game's title, instructions for how to play,
interactive elements for the player to use to enter and submit their guesses, and a
placeholder for providing feedback to the player:

<!DOCTYPE>
 <html>
 <head>
 <meta charset="UTF-8" />
 <title> JavaScript Guessing Game </title>
 </head>
 <body>
 <h1>Guess the Number!</h1>
 <p>I am thinking of a number between 1 and 100. Can you guess what it is?
</p>
 <label for="guess">My Guess</label>
 <input type="number" id="guess">
 <input type="submit" id="submitGuess" value="Check My Guess">
 <p id="feedback"></p>
 </body>
 </html>

The <h1> and <p> elements let the browser know what type of text to display on the page.
The set of <h1> tags signifies that the text between those two tags (Guess the Number!)
is a heading. The set of <p> tags that follow signify that the short block of text with the
instructions is a paragraph. The empty set of <p> tags at the end of this code block serve as a
placeholder for the feedback the game will give the player based on their guess.

The <script> tag
There are many ways to include JavaScript in a web page, but for a short script like this one,
you can use a set of <script> tags and write the JavaScript directly in the HTML file. Those
<script> tags should go right before the closing </body> tag near the end of the HTML
file.

Now, you can start to write your JavaScript between these two script tags. The final file looks
like this:

<!DOCTYPE>
<html>
<head>

Creative Commons Attribution Share-alike 4.0 4

http://december.com/html/4/element/head.html
http://december.com/html/4/element/html.html
http://december.com/html/4/element/html.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/label.html
http://december.com/html/4/element/label.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/meta.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/html.html

 <meta charset="UTF-8" />
 <title> JavaScript Guessing Game </title>
</head>
<body>
 <h1>Guess the Number!</h1>
 <p>I am thinking of a number between 1 and 100. Can you guess what it is?</p>
 <form>
 <label for="guess">My Guess</label>
 <input type="number" id="guess">
 <input type="submit" id="submitGuess" value="Check My Guess">
 </form>
 <p id="feedback"></p>
 <script>
 const randomNumber = Math.floor(Math.random() * 100) + 1
 console.log('Random Number', randomNumber)
 function checkGuess() {
 let myGuess = guess.value
 if (myGuess === randomNumber) {
 feedback.textContent = "You got it right!"
 } else if (myGuess > randomNumber) {
 feedback.textContent = "Your guess was " + myGuess + ". That's too high.
Try Again!"
 } else if (myGuess < randomNumber) {
 feedback.textContent = "Your guess was " + myGuess + ". That's too low.
Try Again!"
 }
 }
 submitGuess.addEventListener('click', checkGuess)
 </script>
</body>
</html>

To run this in the browser, either double-click on the file or go to the menu in your favorite
web browser and choose File > Open File. (If you are using Brackets, you can also use the
lightning-bolt symbol in the corner to open the file in the browser).

Pseudo-random number generation
The first step in the guessing game is to generate a number for the player to guess.
JavaScript includes several built-in global objects that help you write code. To generate your
random number, use the Math object.

Math has properties and functions for working with mathematical concepts in JavaScript. You
will use two Math functions to generate the random number for your player to guess.

Creative Commons Attribution Share-alike 4.0 5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
http://december.com/html/4/element/html.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/label.html
http://december.com/html/4/element/label.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/meta.html

Start with Math.random(), which generates a pseudo-random number between 0 and 1.
(Math.random is inclusive of 0 but exclusive of 1. This means that the function could generate
a zero, but it will never generate a 1.)

For this game, set the random number between 1 and 100 to narrow down the player's options.
Take the decimal you just generated and multiply it by 100 to produce a decimal between 0
and…not quite 100. But you'll take care of that in a few more steps.

Right now, your number is still a decimal, and you want it to be a whole number. For that, you
can use another function that is part of the Math object, Math.floor(). Math.floor()'s purpose
is to return the largest integer that is less than or equal to the number you give it as an
argument—which means it rounds down to the nearest whole number:

Math.floor(Math.random() * 100)

That leaves you with a whole number between 0 and 99, which isn't quite the range you want.
You can fix that with your last step, which is to add 1 to the result. Voila! Now you have a
(somewhat) randomly generated number between 1 and 100:

Math.floor(Math.random() * 100) + 1

Variables
Now you need to store the randomly generated number so that you can compare it to your
player's guesses. To do that, you can assign it to a variable.

JavaScript has different types of variables you can choose, depending on how you want to
use the variable. For this game, use const and let.

• let is used for variables if their value can change throughout the code.
• const is used for variables if their value should not be changed.

There's a little more to const and let, but this is all you need to know for now.

The random number is generated only once in the game, so you will use a const variable to
hold the value. You want to give the variable a name that makes it clear what value is being
stored, so name it randomNumber:

const randomNumber

Creative Commons Attribution Share-alike 4.0 6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/floor
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random

A note on naming: Variables and function names in JavaScript are written in camel case. If
there is just one word, it is written in all lower case. If there is more than one word, the first word
is all lower case, and any additional words start with a capital letter with no spaces between the
words.

Logging to the console
Normally, you don't want to show anyone the random number, but developers may want to
know the number that was generated to use it to help debug the code. With JavaScript, you
can use another built-in function, console.log(), to output the number to the console in your
browser.

Most browsers include Developer Tools that you can open by pressing the F12 key on your
keyboard. From there, you should see a tab labeled Console. Any information logged to the
console will appear here. Since the code you have written so far will run as soon as the
browser loads, if you look at the console, you should see the random number that you just
generated! Hooray!

Creative Commons Attribution Share-alike 4.0 7

https://developer.mozilla.org/en-US/docs/Web/API/Console/log

Functions
Next, you need a way to get the player's guess from the number input field, compare it to the
random number you just generated, and give the player feedback to let them know if they
guessed correctly. To do that, write a function. A function is code that is grouped to perform
a task. Functions are reusable, which means if you need to run the same code multiple times,
you can call the function instead of rewriting all of the steps needed to perform the task.

Depending on the JavaScript version you are using, there are many different ways to write, or
declare, a function. Since this is an introduction to the language, declare your function using
the basic function syntax.

Start with the keyword function and then give the function a name. It's good practice to use
a name that is an action that describes what the function does. In this case, you are checking
the player's guess, so an appropriate name for this function would be checkGuess. After the
function name, write a set of parentheses and then a set of curly braces. You will write the
body of the function between these curly braces:

function checkGuess() {}

Access the DOM
One of the purposes of JavaScript is to interact with HTML on a webpage. It does this
through the Document Object Model (DOM), which is an object JavaScript uses to access
and change the information on a web page. Right now, you need to get the player's guess
from the number input field you set up in the HTML. You can do that using the id
attribute you assigned to the HTML elements, which in this case is guess:

<input type="number" id="guess">

JavaScript can get the number the player enters into the number input field by accessing its
value. You can do this by referring to the element's id and adding .value to the end. This
time, use a let variable to hold the value of the user's guess:

let myGuess = guess.value

Whatever number the player enters into the number input field will be assigned to the
myGuess variable in the checkGuess function.

Creative Commons Attribution Share-alike 4.0 8

Conditional statements
The next step is to compare the player's guess with the random number the game generates.
You also want to give the player feedback to let them know if their guess was too high, too
low, or correct.

You can decide what feedback the player will receive by using a series of conditional
statements. A conditional statement checks to see if a condition is met before running a
code block. If the condition is not met, the code stops, moves on to check the next condition,
or continues with the rest of the code without running the code in the conditional block:

if (myGuess === randomNumber){
 feedback.textContent = "You got it right!"
}
else if(myGuess > randomNumber) {
 feedback.textContent = "Your guess was " + myGuess + ". That's too high. Try
Again!"
}
else if(myGuess < randomNumber) {
 feedback.textContent = "Your guess was " + myGuess + ". That's too low. Try
Again!"
}

The first conditional block compares the player's guess to the random number the game
generates using a comparison operator ===. The comparison operator checks the value on
the right, compares it to the value on the left, and returns the boolean true if they match and
false if they don't.

If the number matches (yay!), make sure the player knows. To do this, manipulate the DOM by
adding text to the <p> tag that has the id attribute "feedback." This works just like
guess.value above, except instead of getting information from the DOM, it changes the
information in it. <p> elements don't have a value like <input> elements—they have text
instead, so use .textContent to access the element and set the text you want to display:

feedback.textContent = "You got it right!"

Of course, there is a good chance that the player didn't guess right on the first try, so if
myGuess and randomNumber don't match, give the player a clue to help them narrow down
their guesses. If the first conditional fails, the code will skip the code block in that if
statement and check to see if the next condition is true. That brings you to your else if
blocks:

Creative Commons Attribution Share-alike 4.0 9

else if(myGuess > randomNumber) {
 feedback.textContent = "Your guess was " + myGuess + ". That's too high. Try
Again!"
}

If you were to read this as a sentence, it might be something like this: "If the player's guess is
equal to the random number, let them know they got it right. Otherwise (else), check if the
player's guess is greater than randomNumber, and if it is, display the player's guess and tell
them it was too high."

The last possibility is that the player's guess was lower than the random number. To check
that, add one more else if block:

else if(myGuess < randomNumber) {
 feedback.textContent = "Your guess was " + myGuess + ". That's too low. Try
Again!"
}

User events and event listeners
If you look at your script, you'll see that some of the code runs automatically when the page
loads, but some of it does not. You want to generate the random number before the game is
played, but you don't want to check the player's guess until they have entered it into the
number input field and are ready to check it.

The code to generate the random number and log it to the console is outside of a function, so
it will run automatically when the browser loads your script. However, for the code inside your
function to run, you have to call it.

There are several ways to call a function. Here, you want the function to run when the player
clicks on the "Check My Guess" button. Clicking a button creates a user event, which the
JavaScript code can then "listen" for so that it knows when it needs to run a function.

The last line of code adds an event listener to the button to "listen" for when the button is
clicked. When it "hears" that event, it will run the function assigned to the event listener:

submitGuess.addEventListener('click', checkGuess)

Creative Commons Attribution Share-alike 4.0 10

Just like the other instances where you access DOM elements, you can use the button's id to
tell JavaScript which element to interact with. Then you can use the built-in
addEventListener function to tell JavaScript what event to listen for.

You have already seen a function that takes parameters, but take a moment to look at how
this works. Parameters are information that a function needs to perform its task. Not all
functions need parameters, but the addEventListener function needs two. The first
parameter it takes is the name of the user event for which it will listen. The user can interact
with the DOM in many ways, like typing, moving the mouse, tabbing with the keyboard, or
copying and pasting text. In this case, the user event you are listening for is a button click, so
the first parameter will be click.

The second piece of information addEventListener needs is the name of the function to
run when the user clicks the button. In this case, it's the checkGuess function.

Now, when the player presses the "Check My Guess" button, the checkGuess function will
get the value they entered in the number input field, compare it to the random number, and
display feedback in the browser to let the player know how they did. Awesome! Your game is
ready to play.

Learn JavaScript for fun and profit
This bit of Vanilla JavaScript is just a small taste of what this vast ecosystem has to offer. It's a
language well worth investing time into learning, and I encourage you to continue to dig in and
learn more.

Creative Commons Attribution Share-alike 4.0 11

Write your first JavaScript code

By Seth Kenlon

JavaScript is a programming language full of pleasant surprises. Many people first encounter
JavaScript as a language for the web. There's a JavaScript engine in all the major browsers,
there are popular frameworks such as JQuery, Cash, and Bootstrap to help make web design
easier, and there are even programming environments written in JavaScript. It seems to be
everywhere on the internet, but it turns out that it's also a useful language for projects like
Electron, an open source toolkit for building cross-platform desktop apps with JavaScript.

JavaScript is a surprisingly multipurpose language with a wide assortment of libraries for
much more than just making websites. Learning the basics of the language is easy, and it's a
gateway to building whatever you imagine.

Install JavaScript
As you progress with JavaScript, you may find yourself wanting advanced JavaScript libraries
and runtimes. When you're just starting, though, you don't have to install JavaScript at all. All
major web browsers include a JavaScript engine to run the code. You can write JavaScript
using your favorite text editor, load it into your web browser, and see what your code does.

Get started with JavaScript
To write your first JavaScript code, open your favorite text editor, such as Notepad++, Atom,
or VSCode. Because it was developed for the web, JavaScript works well with HTML, so first,
just try some basic HTML:

<html>
 <head>
 <title>JS</title>
 </head>

Creative Commons Attribution Share-alike 4.0 12

http://december.com/html/4/element/head.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/html.html
https://opensource.com/article/20/6/open-source-alternatives-vs-code
https://opensource.com/article/20/12/atom
https://opensource.com/article/16/12/notepad-text-editor
https://www.electronjs.org/

 <body>
 <p id="example">Nothing here.</p>
 </body>
</html>

Save the file, and then open it in a web browser.

(Seth Kenlon, CC BY-SA 4.0)

To add JavaScript to this simple HTML page, you can either create a JavaScript file and refer
to it in the page's head or just embed your JavaScript code in the HTML using the <script>
tag. In this example, I embed the code:

<html>
 <head>
 <title>JS</title>
 </head>
 <body>
 <p id="example">Nothing here.</p>
 <script>
 let myvariable = "Hello world!";
 document.getElementById("example").innerHTML = myvariable;
 </script>
 </body>
</html>

Reload the page in your browser.

Creative Commons Attribution Share-alike 4.0 13

http://december.com/html/4/element/html.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/html.html
https://creativecommons.org/licenses/by-sa/4.0/
http://december.com/html/4/element/html.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/body.html

(Seth Kenlon, CC BY-SA 4.0)

As you can see, the <p> tag as written still contains the string "Nothing here," but when it's
rendered, JavaScript alters it so that it contains "Hello world" instead. Yes, JavaScript has the
power to rebuild (or just help build) a webpage.

The JavaScript in this simple script does two things. First, it creates a variable called
myvariable and places the string "Hello world!" into it. Finally, it searches the current
document (the web page as the browser is rendering it) for any HTML element with the ID
example. When it locates example, it uses the innerHTML function to replace the contents
of the HTML element with the contents of myvariable.

Of course, using a custom variable isn't necessary. It's just as easy to populate the HTML
element with something being dynamically created. For instance, you could populate it with a
timestamp:

<html>
 <head>
 <title>JS</title>
 </head>
 <body>
 <p id="example">Date and time appears here.</p>
 <script>
 document.getElementById("example").innerHTML = Date();
 </script>
 </body>
</html>

Reload the page to see a timestamp generated at the moment the page is rendered. Reload a
few times to watch the seconds increment.

Creative Commons Attribution Share-alike 4.0 14

http://december.com/html/4/element/html.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/html.html
https://creativecommons.org/licenses/by-sa/4.0/

JavaScript syntax
In programming, syntax refers to the rules of how sentences (or "lines") are written. In
JavaScript, each line of code must end in a semicolon (;) so that the JavaScript engine
running your code understands when to stop reading.

Words (or "strings") must be enclosed in quotation marks ("), while numbers (or "integers")
go without.

Almost everything else is a convention of the JavaScript language, such as variables, arrays,
conditional statements, objects, functions, and so on.

Creating variables in JavaScript
Variables are containers for data. You can think of a variable as a box where you can put data
to share with your program. Creating a variable in JavaScript is done with two keywords you
choose based on how you intend to use the variable: let and var. The var keyword denotes
a variable intended for your entire program to use, while let creates variables for specific
purposes, usually inside functions or loops.

JavaScript's built-in typeof function can help you identify what kind of data a variable
contains. Using the first example, you can find out what kind of data myvariable contains by
modifying the displayed text to:

<string>
let myvariable = "Hello world!";
document.getElementById("example").innerHTML = typeof(myvariable);
</string>

This renders "string" in your web browser because the variable contains "Hello world!" Storing
different kinds of data (such as an integer) in myvariable would cause a different data type
to be printed to your sample web page. Try changing the contents of myvariable to your
favorite number and then reloading the page.

Creating functions in JavaScript
Functions in programming are self-contained data processors. They're what makes
programming modular. It's because functions exist that programmers can write generic
libraries that, for instance, resize images or keep track of the passage of time for other
programmers (like you) to use in their own code.

Creative Commons Attribution Share-alike 4.0 15

You create a function by providing a custom name for your function followed by any amount
of code enclosed within braces.

Here's a simple web page featuring a resized image and a button that analyzes the image and
returns the true image dimensions. In this example code, the <button> HTML element uses
the built-in JavaScript function onclick to detect user interaction, which triggers a custom
function called get_size:

<html>
 <head>
 <title>Imager</title>
 </head>
 <body>
 <div>
 <button onclick="get_size(document.getElementById('myimg'))">
 Get image size
 </button>
 </div>

 <div>

 </div>
 <script>
 function get_size(i) {
 let w = i.naturalWidth;
 let h = i.naturalHeight;
 alert(w + " by " + h);
 }
 </script>

 </body>
</html>

Save the file and load it into your web browser to try the code.

Creative Commons Attribution Share-alike 4.0 16

http://december.com/html/4/element/html.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/img.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/html.html

(Seth Kenlon, CC BY-SA 4.0)

Cross-platform apps with JavaScript
You can see from the code sample how JavaScript and HTML work closely together to create
a cohesive user experience. This is one of the great strengths of JavaScript. When you write
code in JavaScript, you inherit one of the most common user interfaces of modern computing
regardless of platform: the web browser. Your code is cross-platform by nature, so your
application, whether it's just a humble image size analyzer or a complex image editor, video
game, or whatever else you dream up, can be used by everyone with a web browser (or a
desktop, if you deliver an Electron app).

Learning JavaScript is easy and fun. There are lots of websites with tutorials available. There
are also over a million JavaScript libraries to help you interface with devices, peripherals, the
Internet of Things, servers, file systems, and lots more. And as you're learning, keep
our JavaScript cheat sheet close by so you remember the fine details of syntax and
structure.

Creative Commons Attribution Share-alike 4.0 17

https://opensource.com/downloads/javascript-cheat-sheet
https://creativecommons.org/licenses/by-sa/4.0/

Create a JavaScript API in 6
minutes

By Jessica Cherry

This article demonstrates creating a base API with Express and JavaScript. Express is a
NodeJS minimalist web framework. This combination allows for minimal effort to get an API
up and running at the speed of light. If you have six minutes of free time, you can get this API
working to do something useful.

Get started with NodeJS
What you need for this project is the NodeJS version of your choice. In this example, I use
NodeJS and HTTPie for testing, a web browser, and a terminal. Once you have those
available, you're ready to start. Let's get this show on the road!

Set up a project directory and install the tools to get started:

$ mkdir test-api

The npm init command creates the package JSON for our project below. Type npm init
and press enter several times. The output is shown below:

$ npm init
Press ^C at any time to quit.
package name: (test-api)
version: (1.0.0)
description:
entry point: (index.js)
test command:
git repository:
keywords:
author:

Creative Commons Attribution Share-alike 4.0 18

https://opensource.com/article/19/8/getting-started-httpie
https://nodejs.org/en/download/

license: (ISC)
About to write to /Users/cherrybomb/test-api/package.json:
{
 "name": "test-api",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}
Is this OK? (yes)

This utility walks you through creating a package.json file. It only covers the most common
items, and tries to guess sensible defaults. See npm help init for definitive
documentation on these fields and exactly what they do.

Use npm install {pkg} afterward to install a package and save it as a dependency in the
package.json file.

Next, install Express using the npm CLI :

$ npm install express
npm WARN cherrybomb No description
npm WARN cherrybomb No repository field.
npm WARN cherrybomb No license field.
+ express@4.18.1
added 60 packages from 39 contributors and audited 136 packages in 4.863s
16 packages are looking for funding
 run `npm fund` for details
found 0 vulnerabilities

Finally, create your source directory and your index.js file, which is where the application
code lives:

$ mkdir src
$ touch src/index.js

Time to code!

Creative Commons Attribution Share-alike 4.0 19

https://github.com/npm/cli
https://github.com/npm/cli

Code an API
For your first act of coding, make a simple "hello world" API call. In your index.js file, add
the code snippet below:

const express = require('express')
const app = express()
const port = 5000
app.get('/', (req, res) => {
 res.send('Hello World!')
})
app.listen(port, () => {
 console.log(`Example app listening on port ${port}`)
})

Each of these constant variables is available in the scopes below. Because you're not using the
following scopes within the code, these constants are used without too much extra thought.

When you call app.get, you define the GET{rest article needed} endpoint to a
forward slash. This also sets the "hello world" response.

Finally, in the last section, you will start your app on port 5000. The output on your terminal
shows your defined message in a file called console.log.

To start your application, run the following command, and see the output as shown:

$ node ./src/index.js
Example app listening on port 5000

Test the API
Now that everything is up and running, make a simple call to ensure your API works. For the
first test, just open a browser window and navigate to localhost:5000.

Creative Commons Attribution Share-alike 4.0 20

(Jessica Cherry, CC BY-SA 4.0)

Next, check out what HTTPie says about the API call:

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 12
Content-Type: text/html; charset=utf-8
Date: Tue, 21 Jun 2022 14:31:06 GMT
ETag: W/"c-Lve95gjOVATpfV8EL5X4nxwjKHE"
Keep-Alive: timeout=5
X-Powered-By: Express
Hello World!

And there you have it! One whole working API call. So what's next? Well, you could try some
changes to make it more interesting.

Creative Commons Attribution Share-alike 4.0 21

Make your API fun
The "hello world" piece is now done, so it's time to do some cool math. You'll do some counts
instead of just "hello world."

Change your code to look like this:

const express = require('express')
const app = express()
const port = 5000
let count = 0;
app.get('/api', (req, res) => {
res.json({count})
})
app.post('/api', (req, res) => {
++count;
res.json({count});
});
app.listen(port, () => {
console.log(`Example app listening on port ${port}`)
})

Aside from a GET command in your code, you now have a POST to make some changes to
your count. With count defined as 0, the LET command allows changes to the COUNT variable.

In app.get, you get the count, and in app.post, you ++count, which counts upwards in
increments of 1. When you rerun the GET, you receive the new number.

Try out the changes:

test-api → node ./src/index.js
Example app listening on port 5000

Next, use HTTPie to run the GET and POST operations for a test to confirm it works. Starting
with GET, you can grab the count:

test-api → http GET 127.0.0.1:5000/api
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 11
Content-Type: application/json; charset=utf-8
Date: Tue, 21 Jun 2022 15:23:06 GMT
ETag: W/"b-ch7MNww9+xUYoTgutbGr6VU0GaU"
Keep-Alive: timeout=5
X-Powered-By: Express
{

Creative Commons Attribution Share-alike 4.0 22

 "count": 0
}

Then do a POST a couple of times, and watch the changes:

test-api → http POST 127.0.0.1:5000/api
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 11
Content-Type: application/json; charset=utf-8
Date: Tue, 21 Jun 2022 15:28:28 GMT
ETag: W/"b-qA97yBec1rrOyf2eVsYdWwFPOso"
Keep-Alive: timeout=5
X-Powered-By: Express
{ "count": 1 }
test-api → http POST 127.0.0.1:5000/api
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 11
Content-Type: application/json; charset=utf-8
Date: Tue, 21 Jun 2022 15:28:34 GMT
ETag: W/"b-hRuIfkAGnfwKvpTzajm4bAWdKxE"
Keep-Alive: timeout=5
X-Powered-By: Express
{ "count": 2 }

As you can see, the count goes up! Run one more GET operation and see what the output is:

test-api → http GET 127.0.0.1:5000/api
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 11
Content-Type: application/json; charset=utf-8
Date: Tue, 21 Jun 2022 15:29:41 GMT
ETag: W/"b-hRuIfkAGnfwKvpTzajm4bAWdKxE"
Keep-Alive: timeout=5
X-Powered-By: Express
{ "count": 2 }

The end and the beginning
I specialize in infrastructure and Terraform, so this was a really fun way to learn and build
something quickly in a language I'd never used before. JavaScript moves fast, and it can be
annoying to see errors that seem obscure or obtuse. I can see where some personal opinions
have judged it harshly as a language, but it's a strong and useful tool. I hope you enjoyed this
walkthrough and learned something new and cool along the way.

Creative Commons Attribution Share-alike 4.0 23

https://opensource.com/article/20/7/terraform-kubernetes

How much JavaScript do you need
to know before learning ReactJS?

By Sachin Samal

React is a UI framework built on top of HTML, CSS, and JavaScript, where JavaScript (JS) is
responsible for most of the logic. If you have knowledge of variables, data types, array
functions, callbacks, scopes, string methods, loops, and other JS DOM manipulation-related
topics, these will tremendously speed up the pace of learning ReactJS.

Your concept of modern JavaScript will dictate the pace of how soon you can get going with
ReactJS. You don't need to be a JavaScript expert to start your ReactJS journey, but just as
knowledge of ingredients is a must for any chef hoping to master cooking, the same is true for
learning ReactJS. It's a modern JavaScript UI library, so you need to know some JavaScript.
The question is, how much?

Example explanation
Suppose I'm asked to write an essay about a "cow" in English, but that I know nothing about
the language. In this case, for me to successfully complete the task, I should not only have an
idea about the topic but also the specified language.

Assuming that I acquire some knowledge about the topic (a cow), how can I calculate the
amount of English I need to know to be able to write about the proscribed topic? What if I
have to write an essay on some other complex topics in English?

It’s difficult to figure that out, isn’t it? I don’t know what things I'm going to write about the
topic, but it could be anything. So to get started, I have to have a proper knowledge of the
English language, but it doesn't end there.

Creative Commons Attribution Share-alike 4.0 24

Extreme reality
The same is true for the amount of JavaScript required before getting started with ReactJS.
According to my example scenario, ReactJS is the topic "cow" while JavaScript is the English
language. It's important to have a strong grasp of JavaScript to be successful in ReactJS. One
is very unlikely to master ReactJS professionally without having the proper foundation of
JavaScript. No matter how much knowledge I might have about the topic, I won’t be able to
express myself properly if I don't know the fundamentals of the language.

How much is enough?
In my experience, when you start your ReactJS journey, you should already be familiar with:

• variables
• data types
• string methods
• loops
• conditionals

You should be familiar with these specifically in JavaScript. But these are just the bare
minimum prerequisites. When you try to create a simple React app, you'll inevitably need to
handle events. So, the concept of normal functions, function expressions, statements, arrow
function, the difference between an arrow function and a regular function, and the lexical
scoping of this keyword in both types of function is really important.

But the question is, what if I have to create a complex app using ReactJS?

Get inspired
Handling events, spread operators, destructuring, named imports, and default imports in
JavaScript will help you understand the working mechanism of React code.

Most importantly, you must understand the core concepts behind JavaScript itself. JavaScript
is asynchronous by design. Don't be surprised when code appearing at the bottom of a file
executes before code at the top of the file does. Constructs like promises, callbacks, async-
await, map, filter, and reduce, are the most common methods and concepts in ReactJS,
especially when developing complex applications.

Creative Commons Attribution Share-alike 4.0 25

The main idea is to be good in JavaScript so you can reduce the complexity of your ReactJS
journey.

Getting good
It's easy for me to say what you need to know, but it's something else entirely for you to go
learn it. Practicing a lot of JavaScript is essential, but you might be surprised that I don't think
it means you necessarily have to wait until you master it. There are certain concepts that are
important beforehand, but there's a lot you can learn as you go. Part of practicing is learning,
so you get started with JavaScript and even with some of the basics of React, as long as you
move at a comfortable pace and understand that doing your "homework" is a requirement
before you attempt anything serious.

Get started with JavaScript now
Don't bother waiting until you cover all aspects of JavaScript. That's never going to happen. If
you do that, you'll get trapped in that forever-loop of learning JavaScript. And you all know
how constantly evolving and rapidly changing the tech field is. If you want to start learning
JavaScript, try reading Mandy Kendall's introductory article Learn JavaScript by writing a
guessing game. It's a great way to get started quickly, and once you see what's possible I think
you're likely to find it difficult to stop.

Creative Commons Attribution Share-alike 4.0 26

https://opensource.com/article/21/1/learn-javascript
https://opensource.com/article/21/1/learn-javascript

Code your first React UI app

By Jessica Cherry

Who wants to create their first UI app? I do, and if you're reading this article, I assume you do,
too. In today's example, I'll use some JavaScript and the API with Express I demonstrated in
my previous article. First, let me explain some of the tech you're about to use.

What is React?
React is a JavaScript library for building a user interface (UI). However, you need more than
just the UI library for a functional UI. Here are the important components of the JavaScript
web app you're about to create:

• npx: This package is for executing npm packages.
• axios: A promise-based HTTP client for the browser and node.js. A promise is a value

that an API endpoint will provide.
• http-proxy-middleware: Configures proxy middleware with ease. A proxy is middleware

that helps deal with messaging back and forth from the application endpoint to the
requester.

Preconfiguration
If you haven't already, look at my previous article. You'll use that code as part of this React
app. In this case, you'll add a service to use as part of the app. As part of this application, you
have to use the npx package to create the new folder structure and application:

$ npx create-react-app count-ui
npx: installed 67 in 7.295s
Creating a new React app in /Users/cherrybomb/count-ui.
Installing packages. This might take a couple of minutes.
Installing react, react-dom, and react-scripts with cra-template...
[...]

Creative Commons Attribution Share-alike 4.0 27

https://opensource.com/article/22/7/javascript-api-express
https://opensource.com/article/22/7/javascript-api-express

Installing template dependencies using npm...
+ @testing-library/jest-dom@5.16.4
+ @testing-library/user-event@13.5.0
+ web-vitals@2.1.4
+ @testing-library/react@13.3.0
added 52 packages from 109 contributors in 9.858s
[...]
Success! Created count-ui at /Users/cherrybomb/count-ui
[...]
We suggest that you begin by typing:
 cd count-ui
 npm start

As you can see, the npx command has created a new template with a folder structure, an
awesome README file, and a Git repository. Here's the structure:

$ cd count-ui/
/Users/cherrybomb/count-ui
$ ls -A -1
.git
.gitignore
README.md
node_modules
package-lock.json
package.json
public
src

This process also initialized the Git repo and set the branch to master, which is a pretty cool
trick. Next, install the npm packages:

$ npm install axios http-proxy-middleware
[...]
npm WARN @apideck/better-ajv-errors@0.3.4 requires a peer of ajv@>=8 but none is
installed. You must install peer dependencies yourself.
+ http-proxy-middleware@2.0.6
+ axios@0.27.2
added 2 packages from 2 contributors, updated 1 package and audited 1449 packages
in 5.886s

Now that those are set up, add your services, and main.js file:

$ mkdir src/services
src/services
$ touch src/services/main.js

Creative Commons Attribution Share-alike 4.0 28

Preconfiguration is now complete, so you can now work on coding.

Code a UI from start to finish
Now that you have everything preconfigured, you can put together the service for your
application. Add the following code to the main.js file:

import axios from 'axios';
const baseURL = 'http://localhost:5001/api';
export const get = async () => await axios.get(`${baseURL}/`);
export const increment = async () => await axios.post(`${baseURL}/`);
export default {
 get,
 increment
}

This process creates a JavaScript file that interacts with the API you created in my previous
article.

Set up the proxy
Next, you must set up a proxy middleware by creating a new file in the src directory.

$ touch src/setupProxy.js

Configure the proxy with this code in setupProxy.js:

const { createProxyMiddleware } = require('http-proxy-middleware');
module.exports = function(app) {
 app.use(
 '/api',
 createProxyMiddleware({
 target: 'http://localhost:5000',
 changeOrigin: true,
 })
);
};

In this code, the app.use function specifies the service to use as /api when connecting to
the existing API project. However, nothing defines api in the code. This is where a proxy
comes in. With a proxy, you can define the api function on the proxy level to interact with
your Express API. This middleware registers requests between both applications because the

Creative Commons Attribution Share-alike 4.0 29

UI and API use the same host with different ports. They require a proxy to transfer internal
traffic.

JavaScript imports
In your base src directory, you see that the original template created an App.js, and you
must add main.js (in the services directory) to your imports in the App.js file. You also
need to import React on the very first line, as it is external to the project:

import React from 'react'
import main from './services/main';

Add the rendering function
Now that you have your imports, you must add a render function. In the App() function of
App.js, add the first section of definitions for react and count before the return section.
This section gets the count from the API and puts it on the screen. In the return function, a
button provides the ability to increment the count.

function App() {
const [count, setCount] = React.useState(0);
React.useEffect(()=>{
 async function fetchCount(){
 const newCount = (await main.get()).data.count;
 setCount(newCount);
 }
 fetchCount();
}, [setCount]);
return (
 <div className="App">
 <header className="App-header">
 <h4>
 {count}
 </h4>
 <button onClick={async ()=>{
 setCount((await main.increment()).data.count);
 }}>
 Increment
 </button>
 </header>
 </div>
);
}

Creative Commons Attribution Share-alike 4.0 30

To start and test the app, run npm run start. You should see the output below. Before
running the application, confirm your API is running from the Express app by running node
./src/index.js.

$ npm run start
> count-ui@0.1.0 start /Users/cherrybomb/count-ui
> react-scripts start
[HPM] Proxy created: / -> http://localhost:5000
(node:71729) [DEP_WEBPACK_DEV_SERVER_ON_AFTER_SETUP_MIDDLEWARE]
DeprecationWarning: 'onAfterSetupMiddleware' option is deprecated. Please use the
'setupMiddlewares' option.
(Use `node --trace-deprecation ...` to show where the warning was created)
(node:71729) [DEP_WEBPACK_DEV_SERVER_ON_BEFORE_SETUP_MIDDLEWARE]
DeprecationWarning: 'onBeforeSetupMiddleware' option is deprecated. Please use
the 'setupMiddlewares' option.
Starting the development server...

Once everything is running, open your browser to localhost:5000 to see the front end has
a nice, admittedly minimal, page with a button:

(Jessica Cherry, CC BY-SA 4.0)

What happens when you press the button? (Or, in my case, press the button several times.)

Creative Commons Attribution Share-alike 4.0 31

(Jessica Cherry, CC BY-SA 4.0)

The counter goes up!

Congratulations, you now have a React app that uses your new API.

Web apps and APIs
This exercise is a great way to learn how to make a back end and a front end work together.
It's noteworthy to say that if you're using two hosts, you don't need the proxy section of this
article. Either way, JavaScript and React are a quick, templated way to get a front end up and
running with minimal steps. Hopefully, you enjoyed this walk-through. Tell us your thoughts on
learning how to code in JavaScript.

Creative Commons Attribution Share-alike 4.0 32

4 steps to set up global modals in
React

By Ajay Pratap

A modal dialog is a window that appears on top of a web page and requires a user's
interaction before it disappears. React has a couple of ways to help you generate and manage
modals with minimal coding.

If you create them within a local scope, you must import modals into each component and
then create a state to manage each modal's opening and closing status.

By using a global state, you don't need to import modals into each component, nor do you
have to create a state for each. You can import all the modals in one place and use them
anywhere.

In my opinion, the best way to manage modal dialogs in your React application is globally by
using a React context rather than a local state.

How to create global modals
Here are the steps (and code) to set up global modals in React. I'm using Patternfly as my
foundation, but the principles apply to any project.

1. Create a global modal component
In a file called GlobalModal.tsx, create your modal definition:

import React, { useState, createContext, useContext } from 'react';
import { CreateModal, DeleteModal,UpdateModal } from './components';
export const MODAL_TYPES = {
CREATE_MODAL:"CREATE_MODAL",
 DELETE_MODAL: "DELETE_MODAL",
 UPDATE_MODAL: "UPDATE_MODAL"

Creative Commons Attribution Share-alike 4.0 33

https://www.patternfly.org/v4/
https://reactjs.org/

};
const MODAL_COMPONENTS: any = {
 [MODAL_TYPES.CREATE_MODAL]: CreateModal,
 [MODAL_TYPES.DELETE_MODAL]: DeleteModal,
 [MODAL_TYPES.UPDATE_MODAL]: UpdateModal
};
type GlobalModalContext = {
 showModal: (modalType: string, modalProps?: any) => void;
 hideModal: () => void;
 store: any;
};
const initalState: GlobalModalContext = {
 showModal: () => {},
 hideModal: () => {},
 store: {},
};
const GlobalModalContext = createContext(initalState);
export const useGlobalModalContext = () => useContext(GlobalModalContext);
export const GlobalModal: React.FC<{}> = ({ children }) => {
 const [store, setStore] = useState();
 const { modalType, modalProps } = store || {};
 const showModal = (modalType: string, modalProps: any = {}) => {
 setStore({
 ...store,
 modalType,
 modalProps,
 });
 };
 const hideModal = () => {
 setStore({
 ...store,
 modalType: null,
 modalProps: {},
 });
 };
 const renderComponent = () => {
 const ModalComponent = MODAL_COMPONENTS[modalType];
 if (!modalType || !ModalComponent) {
 return null;
 }
 return <ModalComponent id="global-modal" {...modalProps} />;
 };
 return (
 <GlobalModalContext.Provider value={{ store, showModal, hideModal }}>
 {renderComponent()}
 {children}
 </GlobalModalContext.Provider>
);

Creative Commons Attribution Share-alike 4.0 34

};

In this code, all dialog components are mapped with the modal type. The showModal and
hideModal functions are used to open and close dialog boxes, respectively.

The showModal function takes two parameters: modalType and modalProps. The
modalProps parameter is optional; it is used to pass any type of data to the modal as a prop.

The hideModal function doesn't have any parameters; calling it causes the current open
modal to close.

2. Create modal dialog components
In a file called CreateModal.tsx, create a modal:

import React from "react";
import { Modal, ModalVariant, Button } from "@patternfly/react-core";
import { useGlobalModalContext } from "../GlobalModal";
export const CreateModal = () => {
 const { hideModal, store } = useGlobalModalContext();
 const { modalProps } = store || {};
 const { title, confirmBtn } = modalProps || {};
 const handleModalToggle = () => {
 hideModal();
 };
 return (
 <Modal
 variant={ModalVariant.medium}
 title={title || "Create Modal"}
 isOpen={true}
 onClose={handleModalToggle}
 actions={[
 <Button key="confirm" variant="primary" onClick={handleModalToggle}>
 {confirmBtn || "Confirm button"}
 </Button>,
 <Button key="cancel" variant="link" onClick={handleModalToggle}>
 Cancel
 </Button>
]}
 >
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
 veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
 commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
 velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
 cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
 est laborum.

Creative Commons Attribution Share-alike 4.0 35

 </Modal>
);
};

This has a custom hook, useGlobalModalContext, that provides store object from where
you can access all the props and the functions showModal and hideModal. You can close
the modal by using the hideModal function.

To delete a modal, create a file called DeleteModal.tsx:

import React from "react";
import { Modal, ModalVariant, Button } from "@patternfly/react-core";
import { useGlobalModalContext } from "../GlobalModal";
export const DeleteModal = () => {
 const { hideModal } = useGlobalModalContext();
 const handleModalToggle = () => {
 hideModal();
 };
 return (
 <Modal
 variant={ModalVariant.medium}
 title="Delete Modal"
 isOpen={true}
 onClose={handleModalToggle}
 actions={[
 <Button key="confirm" variant="primary" onClick={handleModalToggle}>
 Confirm
 </Button>,
 <Button key="cancel" variant="link" onClick={handleModalToggle}>
 Cancel
 </Button>
]}
 >
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod...
 cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
 est laborum.
 </Modal>
);
};

To update a modal, create a file called UpdateModal.tsx and add this code:

import React from "react";
import { Modal, ModalVariant, Button } from "@patternfly/react-core";
import { useGlobalModalContext } from "../GlobalModal";
export const UpdateModal = () => {
 const { hideModal } = useGlobalModalContext();

Creative Commons Attribution Share-alike 4.0 36

 const handleModalToggle = () => {
 hideModal();
 };
 return (
 <Modal
 variant={ModalVariant.medium}
 title="Update Modal"
 isOpen={true}
 onClose={handleModalToggle}
 actions={[
 <Button key="confirm" variant="primary" onClick={handleModalToggle}>
 Confirm
 </Button>,
 <Button key="cancel" variant="link" onClick={handleModalToggle}>
 Cancel
 </Button>
]}
 >
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim...
 cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
 est laborum.
 </Modal>
);
};

3. Integrate GlobalModal into the top-level component in your application
To integrate the new modal structure you've created into your app, you just import the global
modal class you've created. Here's my sample App.tsx file:

import "@patternfly/react-core/dist/styles/base.css";
import "./fonts.css";
import { GlobalModal } from "./components/GlobalModal";
import { AppLayout } from "./AppLayout";
export default function App() {
 return (
 <GlobalModal>
 <AppLayout />
 </GlobalModal>
);
}

App.tsx is the top-level component in your app, but you can add another
component according to your application's structure. However, make sure it is one level above
where you want to access modals.

Creative Commons Attribution Share-alike 4.0 37

GlobalModal is the root-level component where all your modal components are imported
and mapped with their specific modalType.

4. Select the modal's button from the AppLayout component
Adding a button to your modal with AppLayout.js:

import React from "react";
import { Button, ButtonVariant } from "@patternfly/react-core";
import { useGlobalModalContext, MODAL_TYPES } from "./components/GlobalModal";
export const AppLayout = () => {
 const { showModal } = useGlobalModalContext();
 const createModal = () => {
 showModal(MODAL_TYPES.CREATE_MODAL, {
 title: "Create instance form",
 confirmBtn: "Save"
 });
 };
 const deleteModal = () => {
 showModal(MODAL_TYPES.DELETE_MODAL);
 };
 const updateModal = () => {
 showModal(MODAL_TYPES.UPDATE_MODAL);
 };
 return (
 <>
 <Button variant={ButtonVariant.primary} onClick={createModal}>
 Create Modal
 </Button>

 <Button variant={ButtonVariant.primary} onClick={deleteModal}>
 Delete Modal
 </Button>

 <Button variant={ButtonVariant.primary} onClick={updateModal}>
 Update Modal
 </Button>
 </>);
};

There are three buttons in the AppLayout component: create modal, delete modal, and
update modal. Each modal is mapped with the corresponding modalType: CREATE_MODAL,
DELETE_MODAL, or UPDATE_MODAL.

Creative Commons Attribution Share-alike 4.0 38

Use global dialogs
Global modals are a clean and efficient way to handle dialogs in React. They are also easier to
maintain in the long run. The next time you set up a project, keep these tips in mind.

If you'd like to see the code in action, I've included the complete application I created for this
article in a sandbox.

Creative Commons Attribution Share-alike 4.0 39

https://codesandbox.io/s/affectionate-pine-gib74

How I build command-line apps in
JavaScript

By Seth Kenlon and Ramakrishna Pattnaik

JavaScript is a language developed for the web, but its usefulness has gone far beyond just
the Internet. Thanks to projects like Node.js and Electron, JavaScript is as much a general-
purpose scripting language as a browser component. There are JavaScript libraries specially
designed to build command-line interfaces. Yes, you can run JavaScript in your terminal.

Now, when you enter a command into your terminal, there are generally options, also called
switches or flags, that you can use to modify how the command runs. This is a useful
convention defined by the POSIX specification, so as a programmer, it's helpful to know how
to detect and parse the options. To get this functionality from JavaScript, it's useful to use a
library designed to make it easy to build command-line interfaces. My favorite is
Commander.js. It's easy, it's flexible, and it's intuitive.

Installing node
To use the Commander.js library, you must have Node.js installed. On Linux, you can install
Node using your package manager. For example, on Fedora, CentOS, Mageia, and others:

$ sudo dnf install nodejs

On Windows and macOS, you can download installers from the nodejs.org website.

Installing Commander.js
To install Commander.js, use the npm command:

$ npm install commander

Creative Commons Attribution Share-alike 4.0 40

https://nodejs.org/en/download
https://github.com/tj/commander.js
https://opensource.com/article/19/7/what-posix-richard-stallman-explains
https://opensource.com/article/21/8/linux-terminal

Adding a library to your JavaScript code
In JavaScript, you can use the require keyword to include (or import, if you're used to
Python) a library into your code. Create a file called example.js and open it in your favorite
text editor. Add this line to the top to include the Commander.js library:

const { program } = require('commander');

Option parsing in JavaScript
The first thing you must do to parse options is to define the valid options your application can
accept. The Commander.js library lets you define both short and long options, along with a
helpful message to clarify the purpose of each.

program
 .description('A sample application to parse options')
 .option('-a, --alpha', 'Alpha')
 .option('-b, --beta <VALUE>', 'Specify a VALUE', 'Foo');

The first option, which I've called --alpha (-a for short), is a Boolean switch: It either exists
or it doesn't. It takes no arguments. The second option, which I've called --beta (-b for
short), accepts an argument and even specifies a default value when you've provided nothing.

Accessing the command-line data
Once you've defined valid options, you can reference the values using the long option name:

program.parse();
const options = program.opts();
console.log('Options detected:');
if (options.alpha) console.log('alpha');
const beta = !options.beta ? 'no' : options.beta;
console.log('beta is: %s', beta);

Run the application
Try running it with the node command, first with no options:

$ node ./example.js
Options detected:
beta is: Foo

Creative Commons Attribution Share-alike 4.0 41

The default value for beta gets used in the absence of an override from the user.

Run it again, this time using the options:

$ node ./example.js --beta hello --alpha
Options detected:
alpha
beta is: hello

This time, the test script successfully detected the option --alpha, and the --beta option
with the value provided by the user.

Option parsing
Here's the full demonstration code for your reference:

const { program } = require('commander');
program
 .description('A sample application to parse options')
 .option('-a, --alpha', 'Alpha')
 .option('-b, --beta <VALUE>', 'Specify a VALUE', 'Foo');
program.parse();
const options = program.opts();
console.log('Options detected:');
console.log(typeof options);
if (options.alpha) console.log(' * alpha');
const beta = !options.beta ? 'no' : options.beta;
console.log(' * beta is: %s', beta);

There are further examples in the project's Git repository.

Including options for your users is an important feature for any application, and Commander.js
makes it easy to do. There are other libraries aside from Commander.js, but I find this one easy
and quick to use. What's your favorite JavaScript command-line builder?

Creative Commons Attribution Share-alike 4.0 42

https://github.com/tj/commander.js

165+ JavaScript terms you need to
know

By Sachin Samal

JavaScript is a rich language, with sometimes a seemingly overwhelming number of libraries
and frameworks. With so many options available, it's sometimes useful to just look at the
language itself and keep in mind its core components. This glossary covers the core
JavaScript language, syntax, and functions.

JavaScript variables
var: The most used variable. Can be reassigned but only accessed within a function, meaning
function scope. Variables defined with var move to the top when code is executed.

const: Cannot be reassigned and not accessible before they appear within the code,
meaning block scope.

let: Similar to const with block scope, however, the let variable can be reassigned but not
re-declared.

Data types
Numbers: var age = 33

Variables: var a

Text (strings): var a = "Sachin"

Operations: var b = 4 + 5 + 6

True or false statements: var a = true

Constant numbers: const PI = 3.14

Creative Commons Attribution Share-alike 4.0 43

Objects: var fullName = {firstName:"Sachin", lastName: "Samal"}

Objects
This is a simple example of objects in JavaScript. This object describe the variable car, and
includes keys or properties such as make, model, and year are the object's property names.
Each property has a value, such as Nissan, Altima, and 2022. A JavaScript object is a
collection of properties with values, and it functions as a method.

var car = {
make:"Nissan",
model:"Altima",
year:2022,
};

Comparison operators
==: Is equal to

===: Is equal value and equal type

!=: Is not equal

!==: Is not equal value or not equal type

>: Is greater than

<: Is less than

>=: Is greater than or equal to

<=: Is less than or equal to

?: Ternary operator

Logical operators
&&: Logical AND

||: Logical OR

!: Logical NOT

Output data
alert(): Output data in an alert box in the browser window

Creative Commons Attribution Share-alike 4.0 44

confirm(): Open up a yes/no dialog and return true/false depending on user click

console.log(): Write information to the browser console. Good for debugging.

document.write(): Write directly to the HTML document

prompt(): Create a dialog for user input

Array methods
Array: An object that can hold multiple values at once.

concat(): Join several arrays into one

indexOf(): Return the primitive value of the specified object

join(): Combine elements of an array into a single string and return the string

lastIndexOf(): Give the last position at which a given element appears in an array

pop(): Remove the last element of an array

push(): Add a new element at the end

reverse(): Sort elements in descending order

shift(): Remove the first element of an array

slice(): Pull a copy of a portion of an array into a new array

splice(): Add positions and elements in a specified way

toString(): Convert elements to strings

unshift(): Add a new element to the beginning

valueOf(): Return the first position at which a given element appears in an array

JavaScript loops
Loops: Perform specific tasks repeatedly under applied conditions.

for (before loop; condition for loop; execute after loop) {
// what to do during the loop
}

for: Creates a conditional loop

Creative Commons Attribution Share-alike 4.0 45

while: Sets up conditions under which a loop executes at least once, as long as the specified
condition is evaluated as true

do while: Similar to the while loop, it executes at least once and performs a check at the
end to see if the condition is met. If it is, then it executes again

break: Stop and exit the cycle at certain conditions

continue: Skip parts of the cycle if certain conditions are met

if-else statements
An if statement executes the code within brackets as long as the condition in parentheses is
true. Failing that, an optional else statement is executed instead.

if (condition) {
// do this if condition is met
} else {
// do this if condition is not met
}

Strings

String methods
charAt(): Return a character at a specified position inside a string

charCodeAt(): Give the Unicode of the character at that position

concat(): Concatenate (join) two or more strings into one

fromCharCode(): Return a string created from the specified sequence of UTF-16 code units

indexOf(): Provide the position of the first occurrence of a specified text within a string

lastIndexOf(): Same as indexOf() but with the last occurrence, searching backwards

match(): Retrieve the matches of a string against a search pattern

replace(): Find and replace specified text in a string

search(): Execute a search for a matching text and return its position

slice(): Extract a section of a string and return it as a new string

split(): Split a string object into an array of strings at a specified position

Creative Commons Attribution Share-alike 4.0 46

substr(): Extract a substring depended on a specified number of characters, similar to
slice()

substring(): Can't accept negative indices, also similar to slice()

toLowerCase(): Convert strings to lower case

toUpperCase(): Convert strings to upper case

valueOf(): Return the primitive value (that has no properties or methods) of a string object

Number methods
toExponential(): Return a string with a rounded number written as exponential notation

toFixed(): Return the string of a number with a specified number of decimals

toPrecision(): String of a number written with a specified length

toString(): Return a number as a string

valueOf(): Return a number as a number

Math methods
abs(a): Return the absolute (positive) value of a

acos(x): Arccosine of x, in radians

asin(x): Arcsine of x, in radians

atan(x): Arctangent of x as a numeric value

atan2(y,x): Arctangent of the quotient of its arguments

ceil(a): Value of a rounded up to its nearest integer

cos(a): Cosine of a (x is in radians)

exp(a): Value of Ex

floor(a): Value of a rounded down to its nearest integer

log(a): Natural logarithm (base E) of a

max(a,b,c…,z): Return the number with the highest value

min(a,b,c…,z): Return the number with the lowest value

pow(a,b): a to the power of b

Creative Commons Attribution Share-alike 4.0 47

random(): Return a random number between 0 and 1

round(a): Value of a rounded to its nearest integer

sin(a): Sine of a (a is in radians)

sqrt(a): Square root of a

tan(a): Tangent of an angle

Dealing with dates in JavaScript

Set dates
Date(): Create a new date object with the current date and time

Date(2022, 6, 22, 4, 22, 11, 0): Create a custom date object. The numbers
represent year, month, day, hour, minutes, seconds, milliseconds. You can omit anything
except for year and month.

Date("2022-07-29"): Date declaration as a string

Pull date and time values
getDate(): Day of the month as a number (1-31)

getDay(): Weekday as a number (0-6)

getFullYear(): Year as a four-digit number (yyyy)

getHours(): Hour (0-23)

getMilliseconds(): Millisecond (0-999)

getMinutes(): Minute (0-59)

getMonth(): Month as a number (0-11)

getSeconds(): Second (0-59)

getTime(): Milliseconds since January 1, 1970

getUTCDate(): Day (date) of the month in the specified date according to universal time
(also available for day, month, full year, hours, minutes, etc.)

parse: Parse a string representation of a date and return the number of milliseconds since
January 1, 1970

Creative Commons Attribution Share-alike 4.0 48

Set part of a date
setDate(): Set the day as a number (1-31)

setFullYear(): Set the year (optionally month and day)

setHours(): Set the hour (0-23)

setMilliseconds(): Set milliseconds (0-999)

setMinutes(): Set the minutes (0-59)

setMonth(): Set the month (0-11)

setSeconds(): Set the seconds (0-59)

setTime(): Set the time (milliseconds since January 1, 1970)

setUTCDate(): Set the day of the month for a specified date according to universal time
(also available for day, month, full year, hours, minutes, etc.)

Dom mode

Node methods
appendChild(): Add a new child node to an element as the last child node

cloneNode(): Clone an HTML element

compareDocumentPosition(): Compare the document position of two elements

getFeature(): Return an object which implements the APIs of a specified feature

hasAttributes(): Return true if an element has any attributes, otherwise false

hasChildNodes(): Return true if an element has any child nodes, otherwise false

insertBefore(): Insert a new child node before a specified, existing child node

isDefaultNamespace(): Return true if a specified namespaceURI is the default,
otherwise false

isEqualNode(): Check if two elements are equal

isSameNode(): Check if two elements are the same node

isSupported(): Return true if a specified feature is supported on the element

Creative Commons Attribution Share-alike 4.0 49

lookupNamespaceURI(): Return the namespaceURI associated with a given node

normalize(): Join adjacent text nodes and removes empty text nodes in an element

removeChild(): Remove a child node from an element

replaceChild(): Replace a child node in an element

Element methods
getAttribute(): Return the specified attribute value of an element node

getAttributeNS(): Return string value of the attribute with the specified namespace and
name

getAttributeNode(): Get the specified attribute node

getAttributeNodeNS(): Return the attribute node for the attribute with the given
namespace and name

getElementsByTagName(): Provide a collection of all child elements with the specified tag
name

getElementsByTagNameNS(): Return a live HTMLCollection of elements with a certain tag
name belonging to the given namespace

hasAttribute(): Return true if an element has any attributes, otherwise false

hasAttributeNS(): Provide a true/false value indicating whether the current element in a
given namespace has the specified attribute

removeAttribute(): Remove a specified attribute from an element

lookupPrefix(): Return a DOMString containing the prefix for a given namespaceURI, if
present

removeAttributeNS(): Remove the specified attribute from an element within a certain
namespace

removeAttributeNode(): Take away a specified attribute node and return the removed
node

setAttribute(): Set or change the specified attribute to a specified value

setAttributeNS(): Add a new attribute or changes the value of an attribute with the given
namespace and name

Creative Commons Attribution Share-alike 4.0 50

setAttributeNode(): Set or change the specified attribute node

setAttributeNodeNS(): Add a new namespaced attribute node to an element

JavaScript events

Mouse
onclick: User clicks on an element

oncontextmenu: User right-clicks on an element to open a context menu

ondblclick: User double-clicks on an element

onmousedown: User presses a mouse button over an element

onmouseenter: Pointer moves onto an element

onmouseleave: Pointer moves out of an element

onmousemove: Pointer moves while it is over an element

onmouseover: Pointer moves onto an element or one of its children

setInterval(): Call a function or evaluates an expression at

oninput: User input on an element

onmouseup: User releases a mouse button while over an element

onmouseout: User moves the mouse pointer out of an element or one of its children

onerror: Happens when an error occurs while loading an external file

onloadeddata: Media data is loaded

onloadedmetadata: Metadata (like dimensions and duration) is loaded

onloadstart: Browser starts looking for specified media

onpause: Media is paused either by the user or automatically

onplay: Media is started or is no longer paused

onplaying: Media is playing after having been paused or stopped for buffering

onprogress: Browser is in the process of downloading the media

onratechange: Media play speed changes

Creative Commons Attribution Share-alike 4.0 51

onseeked: User finishes moving/skipping to a new position in the media

onseeking: User starts moving/skipping

onstalled: Browser tries to load the media, but it is not available

onsuspend — Browser is intentionally not loading media

ontimeupdate: Play position has changed (e.g., because of fast forward)

onvolumechange: Media volume has changed (including mute)

onwaiting: Media paused but expected to resume (for example, buffering)

Creative Commons Attribution Share-alike 4.0 52

	Opensource.com
	Learn JavaScript by writing a guessing game
	Getting started
	HTML user interface
	The <script> tag
	Pseudo-random number generation
	Variables
	Logging to the console
	Functions
	Access the DOM
	Conditional statements
	User events and event listeners
	Learn JavaScript for fun and profit

	Write your first JavaScript code
	Install JavaScript
	Get started with JavaScript
	JavaScript syntax
	Creating variables in JavaScript
	Creating functions in JavaScript
	Cross-platform apps with JavaScript

	Create a JavaScript API in 6 minutes
	Get started with NodeJS
	Code an API
	Test the API
	Make your API fun
	The end and the beginning

	How much JavaScript do you need to know before learning ReactJS?
	Example explanation
	Extreme reality
	How much is enough?
	Get inspired
	Getting good
	Get started with JavaScript now

	Code your first React UI app
	What is React?
	Preconfiguration
	Code a UI from start to finish
	Set up the proxy
	JavaScript imports
	Add the rendering function
	Web apps and APIs

	4 steps to set up global modals in React
	How to create global modals
	1. Create a global modal component
	2. Create modal dialog components
	3. Integrate GlobalModal into the top-level component in your application
	4. Select the modal's button from the AppLayout component

	Use global dialogs

	How I build command-line apps in JavaScript
	Installing node
	Installing Commander.js
	Adding a library to your JavaScript code
	Option parsing in JavaScript
	Accessing the command-line data
	Run the application
	Option parsing

	165+ JavaScript terms you need to know
	JavaScript variables
	Data types
	Objects
	Comparison operators
	Logical operators
	Output data

	Array methods
	JavaScript loops
	if-else statements
	Strings
	String methods
	Number methods
	Math methods

	Dealing with dates in JavaScript
	Set dates
	Pull date and time values
	Set part of a date

	Dom mode
	Node methods
	Element methods

	JavaScript events
	Mouse

